-- -- mib.txt: -- -- -- mgmt OBJECT IDENTIFIER ::= { iso org(3) dod(6) internet(1) mgmt(2) } nullOID OBJECT IDENTIFIER ::= { ccitt 0 } org OBJECT IDENTIFIER ::= { iso 3 } dod OBJECT IDENTIFIER ::= { org 6 } internet OBJECT IDENTIFIER ::= { dod 1 } mgmt OBJECT IDENTIFIER ::= { internet 2 } mib-2 OBJECT IDENTIFIER ::= { mgmt 1 } directory OBJECT IDENTIFIER ::= { internet 1 } experimental OBJECT IDENTIFIER ::= { internet 3 } private OBJECT IDENTIFIER ::= { internet 4 } snmpV2 OBJECT IDENTIFIER ::= { internet 6 } enterprises OBJECT IDENTIFIER ::= { private 1 } snmpModules OBJECT IDENTIFIER ::= { snmpV2 3 } interfaces OBJECT IDENTIFIER ::= { mib-2 2 } at OBJECT IDENTIFIER ::= { mib-2 3 } ip OBJECT IDENTIFIER ::= { mib-2 4 } icmp OBJECT IDENTIFIER ::= { mib-2 5 } tcp OBJECT IDENTIFIER ::= { mib-2 6 } udp OBJECT IDENTIFIER ::= { mib-2 7 } egp OBJECT IDENTIFIER ::= { mib-2 8 } snmp OBJECT IDENTIFIER ::= { mib-2 11 } -- object types -- from rfc 1907: -- the System group -- -- a collection of objects common to all managed systems. system OBJECT IDENTIFIER ::= { mib-2 1 } sysDescr OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "A textual description of the entity. This value should include the full name and version identification of the system's hardware type, software operating-system, and networking software." ::= { system 1 } sysObjectID OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS read-only STATUS current DESCRIPTION "The vendor's authoritative identification of the network management subsystem contained in the entity. This value is allocated within the SMI enterprises subtree (1.3.6.1.4.1) and provides an easy and unambiguous means for determining `what kind of box' is being managed. For example, if vendor `Flintstones, Inc.' was assigned the subtree 1.3.6.1.4.1.4242, it could assign the identifier 1.3.6.1.4.1.4242.1.1 to its `Fred Router'." ::= { system 2 } sysUpTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The time (in hundredths of a second) since the network management portion of the system was last re-initialized." ::= { system 3 } sysContact OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-write STATUS current DESCRIPTION "The textual identification of the contact person for this managed node, together with information on how to contact this person. If no contact information is known, the value is the zero-length string." ::= { system 4 } sysName OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-write STATUS current DESCRIPTION "An administratively-assigned name for this managed node. By convention, this is the node's fully-qualified domain name. If the name is unknown, the value is the zero-length string." ::= { system 5 } sysLocation OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-write STATUS current DESCRIPTION "The physical location of this node (e.g., `telephone closet, 3rd floor'). If the location is unknown, the value is the zero-length string." ::= { system 6 } sysServices OBJECT-TYPE SYNTAX INTEGER (0..127) MAX-ACCESS read-only STATUS current DESCRIPTION "A value which indicates the set of services that this entity may potentially offers. The value is a sum. This sum initially takes the value zero, Then, for each layer, L, in the range 1 through 7, that this node performs transactions for, 2 raised to (L - 1) is added to the sum. For example, a node which performs only routing functions would have a value of 4 (2^(3-1)). In contrast, a node which is a host offering application services would have a value of 72 (2^(4-1) + 2^(7-1)). Note that in the context of the Internet suite of protocols, values should be calculated accordingly: layer functionality 1 physical (e.g., repeaters) 2 datalink/subnetwork (e.g., bridges) 3 internet (e.g., supports the IP) 4 end-to-end (e.g., supports the TCP) 7 applications (e.g., supports the SMTP) For systems including OSI protocols, layers 5 and 6 may also be counted." ::= { system 7 } -- object resource information -- -- a collection of objects which describe the SNMPv2 entity's -- (statically and dynamically configurable) support of -- various MIB modules. sysORLastChange OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time of the most recent change in state or value of any instance of sysORID." ::= { system 8 } sysORTable OBJECT-TYPE SYNTAX SEQUENCE OF SysOREntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table listing the capabilities of the local SNMPv2 entity acting in an agent role with respect to various MIB modules. SNMPv2 entities having dynamically- configurable support of MIB modules will have a dynamically-varying number of conceptual rows." ::= { system 9 } sysOREntry OBJECT-TYPE SYNTAX SysOREntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry (conceptual row) in the sysORTable." INDEX { sysORIndex } ::= { sysORTable 1 } SysOREntry ::= SEQUENCE { sysORIndex INTEGER, sysORID OBJECT IDENTIFIER, sysORDescr DisplayString, sysORUpTime TimeStamp } sysORIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The auxiliary variable used for identifying instances of the columnar objects in the sysORTable." ::= { sysOREntry 1 } sysORID OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS read-only STATUS current DESCRIPTION "An authoritative identification of a capabilities statement with respect to various MIB modules supported by the local SNMPv2 entity acting in an agent role." ::= { sysOREntry 2 } sysORDescr OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "A textual description of the capabilities identified by the corresponding instance of sysORID." ::= { sysOREntry 3 } sysORUpTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime at the time this conceptual row was last instanciated." ::= { sysOREntry 4 } -- the Interfaces group -- Implementation of the Interfaces group is mandatory for -- all systems. ifNumber OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of network interfaces (regardless of their current state) present on this system." ::= { interfaces 1 } -- the Interfaces table -- The Interfaces table contains information on the entity's -- interfaces. Each interface is thought of as being -- attached to a `subnetwork'. Note that this term should -- not be confused with `subnet' which refers to an -- addressing partitioning scheme used in the Internet suite -- of protocols. ifTable OBJECT-TYPE SYNTAX SEQUENCE OF IfEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of interface entries. The number of entries is given by the value of ifNumber." ::= { interfaces 2 } ifEntry OBJECT-TYPE SYNTAX IfEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An interface entry containing objects at the subnetwork layer and below for a particular interface." INDEX { ifIndex } ::= { ifTable 1 } IfEntry ::= SEQUENCE { ifIndex INTEGER, ifDescr DisplayString, ifType INTEGER, ifMtu INTEGER, ifSpeed Gauge, ifPhysAddress PhysAddress, ifAdminStatus INTEGER, ifOperStatus INTEGER, ifLastChange TimeTicks, ifInOctets Counter, ifInUcastPkts Counter, ifInNUcastPkts Counter, ifInDiscards Counter, ifInErrors Counter, ifInUnknownProtos Counter, ifOutOctets Counter, ifOutUcastPkts Counter, ifOutNUcastPkts Counter, ifOutDiscards Counter, ifOutErrors Counter, ifOutQLen Gauge, ifSpecific OBJECT IDENTIFIER } ifIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each interface. Its value ranges between 1 and the value of ifNumber. The value for each interface must remain constant at least from one re-initialization of the entity's network management system to the next re- initialization." ::= { ifEntry 1 } ifDescr OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..255)) ACCESS read-only STATUS mandatory DESCRIPTION "A textual string containing information about the interface. This string should include the name of the manufacturer, the product name and the version of the hardware interface." ::= { ifEntry 2 } ifType OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following regular1822(2), hdh1822(3), ddn-x25(4), rfc877-x25(5), ethernet-csmacd(6), iso88023-csmacd(7), iso88024-tokenBus(8), iso88025-tokenRing(9), iso88026-man(10), starLan(11), proteon-10Mbit(12), proteon-80Mbit(13), hyperchannel(14), fddi(15), lapb(16), sdlc(17), ds1(18), -- T-1 e1(19), -- european equiv. of T-1 basicISDN(20), primaryISDN(21), -- proprietary serial propPointToPointSerial(22), ppp(23), softwareLoopback(24), eon(25), -- CLNP over IP [11] ethernet-3Mbit(26), nsip(27), -- XNS over IP slip(28), -- generic SLIP ultra(29), -- ULTRA technologies ds3(30), -- T-3 sip(31), -- SMDS frame-relay(32) } ACCESS read-only STATUS mandatory DESCRIPTION "The type of interface, distinguished according to the physical/link protocol(s) immediately `below' the network layer in the protocol stack." ::= { ifEntry 3 } ifMtu OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The size of the largest datagram which can be sent/received on the interface, specified in octets. For interfaces that are used for transmitting network datagrams, this is the size of the largest network datagram that can be sent on the interface." ::= { ifEntry 4 } ifSpeed OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "An estimate of the interface's current bandwidth in bits per second. For interfaces which do not vary in bandwidth or for those where no accurate estimation can be made, this object should contain the nominal bandwidth." ::= { ifEntry 5 } ifPhysAddress OBJECT-TYPE SYNTAX PhysAddress ACCESS read-only STATUS mandatory DESCRIPTION "The interface's address at the protocol layer immediately `below' the network layer in the protocol stack. For interfaces which do not have such an address (e.g., a serial line), this object should contain an octet string of zero length." ::= { ifEntry 6 } ifAdminStatus OBJECT-TYPE SYNTAX INTEGER { up(1), -- ready to pass packets down(2), testing(3) -- in some test mode } ACCESS read-write STATUS mandatory DESCRIPTION "The desired state of the interface. The testing(3) state indicates that no operational packets can be passed." ::= { ifEntry 7 } ifOperStatus OBJECT-TYPE SYNTAX INTEGER { up(1), -- ready to pass packets down(2), testing(3) -- in some test mode } ACCESS read-only STATUS mandatory DESCRIPTION "The current operational state of the interface. The testing(3) state indicates that no operational packets can be passed." ::= { ifEntry 8 } ifLastChange OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime at the time the interface entered its current operational state. If the current state was entered prior to the last re- initialization of the local network management subsystem, then this object contains a zero value." ::= { ifEntry 9 } ifInOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets received on the interface, including framing characters." ::= { ifEntry 10 } ifInUcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of subnetwork-unicast packets delivered to a higher-layer protocol." ::= { ifEntry 11 } ifInNUcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of non-unicast (i.e., subnetwork- broadcast or subnetwork-multicast) packets delivered to a higher-layer protocol." ::= { ifEntry 12 } ifInDiscards OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of inbound packets which were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space." ::= { ifEntry 13 } ifInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol." ::= { ifEntry 14 } ifInUnknownProtos OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received via the interface which were discarded because of an unknown or unsupported protocol." ::= { ifEntry 15 } ifOutOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets transmitted out of the interface, including framing characters." ::= { ifEntry 16 } ifOutUcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets that higher-level protocols requested be transmitted to a subnetwork-unicast address, including those that were discarded or not sent." ::= { ifEntry 17 } ifOutNUcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets that higher-level protocols requested be transmitted to a non- unicast (i.e., a subnetwork-broadcast or subnetwork-multicast) address, including those that were discarded or not sent." ::= { ifEntry 18 } ifOutDiscards OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of outbound packets which were chosen to be discarded even though no errors had been detected to prevent their being transmitted. One possible reason for discarding such a packet could be to free up buffer space." ::= { ifEntry 19 } ifOutErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of outbound packets that could not be transmitted because of errors." ::= { ifEntry 20 } ifOutQLen OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "The length of the output packet queue (in packets)." ::= { ifEntry 21 } ifSpecific OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-only STATUS mandatory DESCRIPTION "A reference to MIB definitions specific to the particular media being used to realize the interface. For example, if the interface is realized by an ethernet, then the value of this object refers to a document defining objects specific to ethernet. If this information is not present, its value should be set to the OBJECT IDENTIFIER { 0 0 }, which is a syntatically valid object identifier, and any conformant implementation of ASN.1 and BER must be able to generate and recognize this value." ::= { ifEntry 22 } -- the Address Translation group atTable OBJECT-TYPE SYNTAX SEQUENCE OF AtEntry ACCESS read-write STATUS mandatory ::= { at 1 } atEntry OBJECT-TYPE SYNTAX AtEntry ACCESS read-write STATUS mandatory ::= { atTable 1 } AtEntry ::= SEQUENCE { atIfIndex INTEGER, atPhysAddress OCTET STRING, atNetAddress NetworkAddress } atIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory ::= { atEntry 1 } atPhysAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-write STATUS mandatory ::= { atEntry 2 } atNetAddress OBJECT-TYPE SYNTAX NetworkAddress ACCESS read-write STATUS mandatory ::= { atEntry 3 } -- the IP group -- Implementation of the IP group is mandatory for all -- systems. ipForwarding OBJECT-TYPE SYNTAX INTEGER { forwarding(1), -- acting as a gateway not-forwarding(2) -- NOT acting as a gateway } ACCESS read-write STATUS mandatory DESCRIPTION "The indication of whether this entity is acting as an IP gateway in respect to the forwarding of datagrams received by, but not addressed to, this entity. IP gateways forward datagrams. IP hosts do not (except those source-routed via the host). Note that for some managed nodes, this object may take on only a subset of the values possible. Accordingly, it is appropriate for an agent to return a `badValue' response if a management station attempts to change this object to an inappropriate value." ::= { ip 1 } ipDefaultTTL OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The default value inserted into the Time-To-Live field of the IP header of datagrams originated at this entity, whenever a TTL value is not supplied by the transport layer protocol." ::= { ip 2 } ipInReceives OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input datagrams received from interfaces, including those received in error." ::= { ip 3 } ipInHdrErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of input datagrams discarded due to errors in their IP headers, including bad checksums, version number mismatch, other format errors, time-to-live exceeded, errors discovered in processing their IP options, etc." ::= { ip 4 } ipInAddrErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of input datagrams discarded because the IP address in their IP header's destination field was not a valid address to be received at this entity. This count includes invalid addresses (e.g., 0.0.0.0) and addresses of unsupported Classes (e.g., Class E). For entities which are not IP Gateways and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address." ::= { ip 5 } ipForwDatagrams OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of input datagrams for which this entity was not their final IP destination, as a result of which an attempt was made to find a route to forward them to that final destination. In entities which do not act as IP Gateways, this counter will include only those packets which were Source-Routed via this entity, and the Source- Route option processing was successful." ::= { ip 6 } ipInUnknownProtos OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol." ::= { ip 7 } ipInDiscards OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of input IP datagrams for which no problems were encountered to prevent their continued processing, but which were discarded (e.g., for lack of buffer space). Note that this counter does not include any datagrams discarded while awaiting re-assembly." ::= { ip 8 } ipInDelivers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of input datagrams successfully delivered to IP user-protocols (including ICMP)." ::= { ip 9 } ipOutRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of IP datagrams which local IP user-protocols (including ICMP) supplied to IP in requests for transmission. Note that this counter does not include any datagrams counted in ipForwDatagrams." ::= { ip 10 } ipOutDiscards OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of output IP datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (e.g., for lack of buffer space). Note that this counter would include datagrams counted in ipForwDatagrams if any such packets met this (discretionary) discard criterion." ::= { ip 11 } ipOutNoRoutes OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of IP datagrams discarded because no route could be found to transmit them to their destination. Note that this counter includes any packets counted in ipForwDatagrams which meet this `no-route' criterion. Note that this includes any datagarms which a host cannot route because all of its default gateways are down." ::= { ip 12 } ipReasmTimeout OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The maximum number of seconds which received fragments are held while they are awaiting reassembly at this entity." ::= { ip 13 } ipReasmReqds OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of IP fragments received which needed to be reassembled at this entity." ::= { ip 14 } ipReasmOKs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of IP datagrams successfully re- assembled." ::= { ip 15 } ipReasmFails OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of failures detected by the IP re- assembly algorithm (for whatever reason: timed out, errors, etc). Note that this is not necessarily a count of discarded IP fragments since some algorithms (notably the algorithm in RFC 815) can lose track of the number of fragments by combining them as they are received." ::= { ip 16 } ipFragOKs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of IP datagrams that have been successfully fragmented at this entity." ::= { ip 17 } ipFragFails OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of IP datagrams that have been discarded because they needed to be fragmented at this entity but could not be, e.g., because their Don't Fragment flag was set." ::= { ip 18 } ipFragCreates OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of IP datagram fragments that have been generated as a result of fragmentation at this entity." ::= { ip 19 } -- the IP address table -- The IP address table contains this entity's IP addressing -- information. ipAddrTable OBJECT-TYPE SYNTAX SEQUENCE OF IpAddrEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The table of addressing information relevant to this entity's IP addresses." ::= { ip 20 } ipAddrEntry OBJECT-TYPE SYNTAX IpAddrEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The addressing information for one of this entity's IP addresses." INDEX { ipAdEntAddr } ::= { ipAddrTable 1 } IpAddrEntry ::= SEQUENCE { ipAdEntAddr IpAddress, ipAdEntIfIndex INTEGER, ipAdEntNetMask IpAddress, ipAdEntBcastAddr INTEGER, ipAdEntReasmMaxSize INTEGER (0..65535) } ipAdEntAddr OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The IP address to which this entry's addressing information pertains." ::= { ipAddrEntry 1 } ipAdEntIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The index value which uniquely identifies the interface to which this entry is applicable. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex." ::= { ipAddrEntry 2 } ipAdEntNetMask OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The subnet mask associated with the IP address of this entry. The value of the mask is an IP address with all the network bits set to 1 and all the hosts bits set to 0." ::= { ipAddrEntry 3 } ipAdEntBcastAddr OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The value of the least-significant bit in the IP broadcast address used for sending datagrams on the (logical) interface associated with the IP address of this entry. For example, when the Internet standard all-ones broadcast address is used, the value will be 1. This value applies to both the subnet and network broadcasts addresses used by the entity on this (logical) interface." ::= { ipAddrEntry 4 } ipAdEntReasmMaxSize OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The size of the largest IP datagram which this entity can re-assemble from incoming IP fragmented datagrams received on this interface." ::= { ipAddrEntry 5 } -- the IP routing table -- The IP routing table contains an entry for each route -- presently known to this entity. ipRouteTable OBJECT-TYPE SYNTAX SEQUENCE OF IpRouteEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "This entity's IP Routing table." ::= { ip 21 } ipRouteEntry OBJECT-TYPE SYNTAX IpRouteEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A route to a particular destination." INDEX { ipRouteDest } ::= { ipRouteTable 1 } IpRouteEntry ::= SEQUENCE { ipRouteDest IpAddress, ipRouteIfIndex INTEGER, ipRouteMetric1 INTEGER, ipRouteMetric2 INTEGER, ipRouteMetric3 INTEGER, ipRouteMetric4 INTEGER, ipRouteNextHop IpAddress, ipRouteType INTEGER, ipRouteProto INTEGER, ipRouteAge INTEGER, ipRouteMask IpAddress, ipRouteMetric5 INTEGER, ipRouteInfo OBJECT IDENTIFIER } ipRouteDest OBJECT-TYPE SYNTAX IpAddress ACCESS read-write STATUS mandatory DESCRIPTION "The destination IP address of this route. An entry with a value of 0.0.0.0 is considered a default route. Multiple routes to a single destination can appear in the table, but access to such multiple entries is dependent on the table- access mechanisms defined by the network management protocol in use." ::= { ipRouteEntry 1 } ipRouteIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The index value which uniquely identifies the local interface through which the next hop of this route should be reached. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex." ::= { ipRouteEntry 2 } ipRouteMetric1 OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The primary routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1." ::= { ipRouteEntry 3 } ipRouteMetric2 OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1." ::= { ipRouteEntry 4 } ipRouteMetric3 OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1." ::= { ipRouteEntry 5 } ipRouteMetric4 OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1." ::= { ipRouteEntry 6 } ipRouteNextHop OBJECT-TYPE SYNTAX IpAddress ACCESS read-write STATUS mandatory DESCRIPTION "The IP address of the next hop of this route. (In the case of a route bound to an interface which is realized via a broadcast media, the value of this field is the agent's IP address on that interface.)" ::= { ipRouteEntry 7 } ipRouteType OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following invalid(2), -- an invalidated route -- route to directly direct(3), -- connected (sub-)network -- route to a non-local indirect(4) -- host/network/sub-network } ACCESS read-write STATUS mandatory DESCRIPTION "The type of route. Note that the values direct(3) and indirect(4) refer to the notion of direct and indirect routing in the IP architecture. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the ipRouteTable object. That is, it effectively dissasociates the destination identified with said entry from the route identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive tabular information from agents that corresponds to entries not currently in use. Proper interpretation of such entries requires examination of the relevant ipRouteType object." ::= { ipRouteEntry 8 } ipRouteProto OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following -- non-protocol information, -- e.g., manually configured local(2), -- entries -- set via a network netmgmt(3), -- management protocol -- obtained via ICMP, icmp(4), -- e.g., Redirect -- the remaining values are -- all gateway routing -- protocols egp(5), ggp(6), hello(7), rip(8), is-is(9), es-is(10), ciscoIgrp(11), bbnSpfIgp(12), ospf(13), bgp(14) } ACCESS read-only STATUS mandatory DESCRIPTION "The routing mechanism via which this route was learned. Inclusion of values for gateway routing protocols is not intended to imply that hosts should support those protocols." ::= { ipRouteEntry 9 } ipRouteAge OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The number of seconds since this route was last updated or otherwise determined to be correct. Note that no semantics of `too old' can be implied except through knowledge of the routing protocol by which the route was learned." ::= { ipRouteEntry 10 } ipRouteMask OBJECT-TYPE SYNTAX IpAddress ACCESS read-write STATUS mandatory DESCRIPTION "Indicate the mask to be logical-ANDed with the destination address before being compared to the value in the ipRouteDest field. For those systems that do not support arbitrary subnet masks, an agent constructs the value of the ipRouteMask by determining whether the value of the correspondent ipRouteDest field belong to a class-A, B, or C network, and then using one of: mask network 255.0.0.0 class-A 255.255.0.0 class-B 255.255.255.0 class-C If the value of the ipRouteDest is 0.0.0.0 (a default route), then the mask value is also 0.0.0.0. It should be noted that all IP routing subsystems implicitly use this mechanism." ::= { ipRouteEntry 11 } ipRouteMetric5 OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "An alternate routing metric for this route. The semantics of this metric are determined by the routing-protocol specified in the route's ipRouteProto value. If this metric is not used, its value should be set to -1." ::= { ipRouteEntry 12 } ipRouteInfo OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-only STATUS mandatory DESCRIPTION "A reference to MIB definitions specific to the particular routing protocol which is responsible for this route, as determined by the value specified in the route's ipRouteProto value. If this information is not present, its value should be set to the OBJECT IDENTIFIER { 0 0 }, which is a syntatically valid object identifier, and any conformant implementation of ASN.1 and BER must be able to generate and recognize this value." ::= { ipRouteEntry 13 } -- the IP Address Translation table -- The IP address translation table contain the IpAddress to -- `physical' address equivalences. Some interfaces do not -- use translation tables for determining address -- equivalences (e.g., DDN-X.25 has an algorithmic method); -- if all interfaces are of this type, then the Address -- Translation table is empty, i.e., has zero entries. ipNetToMediaTable OBJECT-TYPE SYNTAX SEQUENCE OF IpNetToMediaEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The IP Address Translation table used for mapping from IP addresses to physical addresses." ::= { ip 22 } ipNetToMediaEntry OBJECT-TYPE SYNTAX IpNetToMediaEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Each entry contains one IpAddress to `physical' address equivalence." INDEX { ipNetToMediaIfIndex, ipNetToMediaNetAddress } ::= { ipNetToMediaTable 1 } IpNetToMediaEntry ::= SEQUENCE { ipNetToMediaIfIndex INTEGER, ipNetToMediaPhysAddress PhysAddress, ipNetToMediaNetAddress IpAddress, ipNetToMediaType INTEGER } ipNetToMediaIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The interface on which this entry's equivalence is effective. The interface identified by a particular value of this index is the same interface as identified by the same value of ifIndex." ::= { ipNetToMediaEntry 1 } ipNetToMediaPhysAddress OBJECT-TYPE SYNTAX PhysAddress ACCESS read-write STATUS mandatory DESCRIPTION "The media-dependent `physical' address." ::= { ipNetToMediaEntry 2 } ipNetToMediaNetAddress OBJECT-TYPE SYNTAX IpAddress ACCESS read-write STATUS mandatory DESCRIPTION "The IpAddress corresponding to the media- dependent `physical' address." ::= { ipNetToMediaEntry 3 } ipNetToMediaType OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following invalid(2), -- an invalidated mapping dynamic(3), static(4) } ACCESS read-write STATUS mandatory DESCRIPTION "The type of mapping. Setting this object to the value invalid(2) has the effect of invalidating the corresponding entry in the ipNetToMediaTable. That is, it effectively dissasociates the interface identified with said entry from the mapping identified with said entry. It is an implementation-specific matter as to whether the agent removes an invalidated entry from the table. Accordingly, management stations must be prepared to receive tabular information from agents that corresponds to entries not currently in use. Proper interpretation of such entries requires examination of the relevant ipNetToMediaType object." ::= { ipNetToMediaEntry 4 } -- the ICMP group -- Implementation of the ICMP group is mandatory for all -- systems. icmpInMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of ICMP messages which the entity received. Note that this counter includes all those counted by icmpInErrors." ::= { icmp 1 } icmpInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP messages which the entity received but determined as having ICMP-specific errors (bad ICMP checksums, bad length, etc.)." ::= { icmp 2 } icmpInDestUnreachs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Destination Unreachable messages received." ::= { icmp 3 } icmpInTimeExcds OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Time Exceeded messages received." ::= { icmp 4 } icmpInParmProbs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Parameter Problem messages received." ::= { icmp 5 } icmpInSrcQuenchs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Source Quench messages received." ::= { icmp 6 } icmpInRedirects OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Redirect messages received." ::= { icmp 7 } icmpInEchos OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Echo (request) messages received." ::= { icmp 8 } icmpInEchoReps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Echo Reply messages received." ::= { icmp 9 } icmpInTimestamps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Timestamp (request) messages received." ::= { icmp 10 } icmpInTimestampReps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Timestamp Reply messages received." ::= { icmp 11 } icmpInAddrMasks OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Address Mask Request messages received." ::= { icmp 12 } icmpInAddrMaskReps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Address Mask Reply messages received." ::= { icmp 13 } icmpOutMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of ICMP messages which this entity attempted to send. Note that this counter includes all those counted by icmpOutErrors." ::= { icmp 14 } icmpOutErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP messages which this entity did not send due to problems discovered within ICMP such as a lack of buffers. This value should not include errors discovered outside the ICMP layer such as the inability of IP to route the resultant datagram. In some implementations there may be no types of error which contribute to this counter's value." ::= { icmp 15 } icmpOutDestUnreachs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Destination Unreachable messages sent." ::= { icmp 16 } icmpOutTimeExcds OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Time Exceeded messages sent." ::= { icmp 17 } icmpOutParmProbs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Parameter Problem messages sent." ::= { icmp 18 } icmpOutSrcQuenchs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Source Quench messages sent." ::= { icmp 19 } icmpOutRedirects OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Redirect messages sent. For a host, this object will always be zero, since hosts do not send redirects." ::= { icmp 20 } icmpOutEchos OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Echo (request) messages sent." ::= { icmp 21 } icmpOutEchoReps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Echo Reply messages sent." ::= { icmp 22 } icmpOutTimestamps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Timestamp (request) messages sent." ::= { icmp 23 } icmpOutTimestampReps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Timestamp Reply messages sent." ::= { icmp 24 } icmpOutAddrMasks OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Address Mask Request messages sent." ::= { icmp 25 } icmpOutAddrMaskReps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of ICMP Address Mask Reply messages sent." ::= { icmp 26 } -- the TCP group -- Implementation of the TCP group is mandatory for all -- systems that implement the TCP. -- Note that instances of object types that represent -- information about a particular TCP connection are -- transient; they persist only as long as the connection -- in question. tcpRtoAlgorithm OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following constant(2), -- a constant rto rsre(3), -- MIL-STD-1778, Appendix B vanj(4) -- Van Jacobson's algorithm [10] } ACCESS read-only STATUS mandatory DESCRIPTION "The algorithm used to determine the timeout value used for retransmitting unacknowledged octets." ::= { tcp 1 } tcpRtoMin OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The minimum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout. In particular, when the timeout algorithm is rsre(3), an object of this type has the semantics of the LBOUND quantity described in RFC 793." ::= { tcp 2 } tcpRtoMax OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The maximum value permitted by a TCP implementation for the retransmission timeout, measured in milliseconds. More refined semantics for objects of this type depend upon the algorithm used to determine the retransmission timeout. In particular, when the timeout algorithm is rsre(3), an object of this type has the semantics of the UBOUND quantity described in RFC 793." ::= { tcp 3 } tcpMaxConn OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The limit on the total number of TCP connections the entity can support. In entities where the maximum number of connections is dynamic, this object should contain the value -1." ::= { tcp 4 } tcpActiveOpens OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times TCP connections have made a direct transition to the SYN-SENT state from the CLOSED state." ::= { tcp 5 } tcpPassiveOpens OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times TCP connections have made a direct transition to the SYN-RCVD state from the LISTEN state." ::= { tcp 6 } tcpAttemptFails OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP connections have made a direct transition to the LISTEN state from the SYN-RCVD state." ::= { tcp 7 } tcpEstabResets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state." ::= { tcp 8 } tcpCurrEstab OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "The number of TCP connections for which the current state is either ESTABLISHED or CLOSE- WAIT." ::= { tcp 9 } tcpInSegs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of segments received, including those received in error. This count includes segments received on currently established connections." ::= { tcp 10 } tcpOutSegs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of segments sent, including those on current connections but excluding those containing only retransmitted octets." ::= { tcp 11 } tcpRetransSegs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of segments retransmitted - that is, the number of TCP segments transmitted containing one or more previously transmitted octets." ::= { tcp 12 } -- the TCP Connection table -- The TCP connection table contains information about this -- entity's existing TCP connections. tcpConnTable OBJECT-TYPE SYNTAX SEQUENCE OF TcpConnEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A table containing TCP connection-specific information." ::= { tcp 13 } tcpConnEntry OBJECT-TYPE SYNTAX TcpConnEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Information about a particular current TCP connection. An object of this type is transient, in that it ceases to exist when (or soon after) the connection makes the transition to the CLOSED state." INDEX { tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress, tcpConnRemPort } ::= { tcpConnTable 1 } TcpConnEntry ::= SEQUENCE { tcpConnState INTEGER, tcpConnLocalAddress IpAddress, tcpConnLocalPort INTEGER (0..65535), tcpConnRemAddress IpAddress, tcpConnRemPort INTEGER (0..65535) } tcpConnState OBJECT-TYPE SYNTAX INTEGER { closed(1), listen(2), synSent(3), synReceived(4), established(5), finWait1(6), finWait2(7), closeWait(8), lastAck(9), closing(10), timeWait(11), deleteTCB(12) } ACCESS read-write STATUS mandatory DESCRIPTION "The state of this TCP connection. The only value which may be set by a management station is deleteTCB(12). Accordingly, it is appropriate for an agent to return a `badValue' response if a management station attempts to set this object to any other value. If a management station sets this object to the value deleteTCB(12), then this has the effect of deleting the TCB (as defined in RFC 793) of the corresponding connection on the managed node, resulting in immediate termination of the connection. As an implementation-specific option, a RST segment may be sent from the managed node to the other TCP endpoint (note however that RST segments are not sent reliably)." ::= { tcpConnEntry 1 } tcpConnLocalAddress OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The local IP address for this TCP connection. In the case of a connection in the listen state which is willing to accept connections for any IP interface associated with the node, the value 0.0.0.0 is used." ::= { tcpConnEntry 2 } tcpConnLocalPort OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The local port number for this TCP connection." ::= { tcpConnEntry 3 } tcpConnRemAddress OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The remote IP address for this TCP connection." ::= { tcpConnEntry 4 } tcpConnRemPort OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The remote port number for this TCP connection." ::= { tcpConnEntry 5 } -- additional TCP objects tcpInErrs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of segments received in error (e.g., bad TCP checksums)." ::= { tcp 14 } tcpOutRsts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of TCP segments sent containing the RST flag." ::= { tcp 15 } -- the UDP group -- Implementation of the UDP group is mandatory for all -- systems which implement the UDP. udpInDatagrams OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of UDP datagrams delivered to UDP users." ::= { udp 1 } udpNoPorts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of received UDP datagrams for which there was no application at the destination port." ::= { udp 2 } udpInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port." ::= { udp 3 } udpOutDatagrams OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of UDP datagrams sent from this entity." ::= { udp 4 } -- the UDP Listener table -- The UDP listener table contains information about this -- entity's UDP end-points on which a local application is -- currently accepting datagrams. udpTable OBJECT-TYPE SYNTAX SEQUENCE OF UdpEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A table containing UDP listener information." ::= { udp 5 } udpEntry OBJECT-TYPE SYNTAX UdpEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Information about a particular current UDP listener." INDEX { udpLocalAddress, udpLocalPort } ::= { udpTable 1 } UdpEntry ::= SEQUENCE { udpLocalAddress IpAddress, udpLocalPort INTEGER (0..65535) } udpLocalAddress OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The local IP address for this UDP listener. In the case of a UDP listener which is willing to accept datagrams for any IP interface associated with the node, the value 0.0.0.0 is used." ::= { udpEntry 1 } udpLocalPort OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The local port number for this UDP listener." ::= { udpEntry 2 } -- the EGP group -- Implementation of the EGP group is mandatory for all -- systems which implement the EGP. egpInMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP messages received without error." ::= { egp 1 } egpInErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP messages received that proved to be in error." ::= { egp 2 } egpOutMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of locally generated EGP messages." ::= { egp 3 } egpOutErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of locally generated EGP messages not sent due to resource limitations within an EGP entity." ::= { egp 4 } -- the EGP Neighbor table -- The EGP neighbor table contains information about this -- entity's EGP neighbors. egpNeighTable OBJECT-TYPE SYNTAX SEQUENCE OF EgpNeighEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The EGP neighbor table." ::= { egp 5 } egpNeighEntry OBJECT-TYPE SYNTAX EgpNeighEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Information about this entity's relationship with a particular EGP neighbor." INDEX { egpNeighAddr } ::= { egpNeighTable 1 } EgpNeighEntry ::= SEQUENCE { egpNeighState INTEGER, egpNeighAddr IpAddress, egpNeighAs INTEGER, egpNeighInMsgs Counter, egpNeighInErrs Counter, egpNeighOutMsgs Counter, egpNeighOutErrs Counter, egpNeighInErrMsgs Counter, egpNeighOutErrMsgs Counter, egpNeighStateUps Counter, egpNeighStateDowns Counter, egpNeighIntervalHello INTEGER, egpNeighIntervalPoll INTEGER, egpNeighMode INTEGER, egpNeighEventTrigger INTEGER } egpNeighState OBJECT-TYPE SYNTAX INTEGER { idle(1), acquisition(2), down(3), up(4), cease(5) } ACCESS read-only STATUS mandatory DESCRIPTION "The EGP state of the local system with respect to this entry's EGP neighbor. Each EGP state is represented by a value that is one greater than the numerical value associated with said state in RFC 904." ::= { egpNeighEntry 1 } egpNeighAddr OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The IP address of this entry's EGP neighbor." ::= { egpNeighEntry 2 } egpNeighAs OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The autonomous system of this EGP peer. Zero should be specified if the autonomous system number of the neighbor is not yet known." ::= { egpNeighEntry 3 } egpNeighInMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP messages received without error from this EGP peer." ::= { egpNeighEntry 4 } egpNeighInErrs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP messages received from this EGP peer that proved to be in error (e.g., bad EGP checksum)." ::= { egpNeighEntry 5 } egpNeighOutMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of locally generated EGP messages to this EGP peer." ::= { egpNeighEntry 6 } egpNeighOutErrs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of locally generated EGP messages not sent to this EGP peer due to resource limitations within an EGP entity." ::= { egpNeighEntry 7 } egpNeighInErrMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP-defined error messages received from this EGP peer." ::= { egpNeighEntry 8 } egpNeighOutErrMsgs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP-defined error messages sent to this EGP peer." ::= { egpNeighEntry 9 } egpNeighStateUps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP state transitions to the UP state with this EGP peer." ::= { egpNeighEntry 10 } egpNeighStateDowns OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of EGP state transitions from the UP state to any other state with this EGP peer." ::= { egpNeighEntry 11 } egpNeighIntervalHello OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The interval between EGP Hello command retransmissions (in hundredths of a second). This represents the t1 timer as defined in RFC 904." ::= { egpNeighEntry 12 } egpNeighIntervalPoll OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The interval between EGP poll command retransmissions (in hundredths of a second). This represents the t3 timer as defined in RFC 904." ::= { egpNeighEntry 13 } egpNeighMode OBJECT-TYPE SYNTAX INTEGER { active(1), passive(2) } ACCESS read-only STATUS mandatory DESCRIPTION "The polling mode of this EGP entity, either passive or active." ::= { egpNeighEntry 14 } egpNeighEventTrigger OBJECT-TYPE SYNTAX INTEGER { start(1), stop(2) } ACCESS read-write STATUS mandatory DESCRIPTION "A control variable used to trigger operator- initiated Start and Stop events. When read, this variable always returns the most recent value that egpNeighEventTrigger was set to. If it has not been set since the last initialization of the network management subsystem on the node, it returns a value of `stop'. When set, this variable causes a Start or Stop event on the specified neighbor, as specified on pages 8-10 of RFC 904. Briefly, a Start event causes an Idle peer to begin neighbor acquisition and a non-Idle peer to reinitiate neighbor acquisition. A stop event causes a non-Idle peer to return to the Idle state until a Start event occurs, either via egpNeighEventTrigger or otherwise." ::= { egpNeighEntry 15 } -- additional EGP objects egpAs OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The autonomous system number of this EGP entity." ::= { egp 6 } -- the SNMP group -- Implementation of the SNMP group is mandatory for all -- systems which support an SNMP protocol entity. Some of -- the objects defined below will be zero-valued in those -- SNMP implementations that are optimized to support only -- those functions specific to either a management agent or -- a management station. In particular, it should be -- observed that the objects below refer to an SNMP entity, -- and there may be several SNMP entities residing on a -- managed node (e.g., if the node is hosting acting as -- a management station). snmpInPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of Messages delivered to the SNMP entity from the transport service." ::= { snmp 1 } snmpOutPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Messages which were passed from the SNMP protocol entity to the transport service." ::= { snmp 2 } snmpInBadVersions OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Messages which were delivered to the SNMP protocol entity and were for an unsupported SNMP version." ::= { snmp 3 } snmpInBadCommunityNames OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Messages delivered to the SNMP protocol entity which used a SNMP community name not known to said entity." ::= { snmp 4 } snmpInBadCommunityUses OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Messages delivered to the SNMP protocol entity which represented an SNMP operation which was not allowed by the SNMP community named in the Message." ::= { snmp 5 } snmpInASNParseErrs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of ASN.1 or BER errors encountered by the SNMP protocol entity when decoding received SNMP Messages." ::= { snmp 6 } -- { snmp 7 } is not used snmpInTooBigs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the error-status field is `tooBig'." ::= { snmp 8 } snmpInNoSuchNames OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the error-status field is `noSuchName'." ::= { snmp 9 } snmpInBadValues OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the error-status field is `badValue'." ::= { snmp 10 } snmpInReadOnlys OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number valid SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the error-status field is `readOnly'. It should be noted that it is a protocol error to generate an SNMP PDU which contains the value `readOnly' in the error-status field, as such this object is provided as a means of detecting incorrect implementations of the SNMP." ::= { snmp 11 } snmpInGenErrs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were delivered to the SNMP protocol entity and for which the value of the error-status field is `genErr'." ::= { snmp 12 } snmpInTotalReqVars OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of MIB objects which have been retrieved successfully by the SNMP protocol entity as the result of receiving valid SNMP Get-Request and Get-Next PDUs." ::= { snmp 13 } snmpInTotalSetVars OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of MIB objects which have been altered successfully by the SNMP protocol entity as the result of receiving valid SNMP Set-Request PDUs." ::= { snmp 14 } snmpInGetRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Get-Request PDUs which have been accepted and processed by the SNMP protocol entity." ::= { snmp 15 } snmpInGetNexts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Get-Next PDUs which have been accepted and processed by the SNMP protocol entity." ::= { snmp 16 } snmpInSetRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Set-Request PDUs which have been accepted and processed by the SNMP protocol entity." ::= { snmp 17 } snmpInGetResponses OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Get-Response PDUs which have been accepted and processed by the SNMP protocol entity." ::= { snmp 18 } snmpInTraps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Trap PDUs which have been accepted and processed by the SNMP protocol entity." ::= { snmp 19 } snmpOutTooBigs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the error-status field is `tooBig.'" ::= { snmp 20 } snmpOutNoSuchNames OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the error-status is `noSuchName'." ::= { snmp 21 } snmpOutBadValues OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the error-status field is `badValue'." ::= { snmp 22 } -- { snmp 23 } is not used snmpOutGenErrs OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP PDUs which were generated by the SNMP protocol entity and for which the value of the error-status field is `genErr'." ::= { snmp 24 } snmpOutGetRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Get-Request PDUs which have been generated by the SNMP protocol entity." ::= { snmp 25 } snmpOutGetNexts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Get-Next PDUs which have been generated by the SNMP protocol entity." ::= { snmp 26 } snmpOutSetRequests OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Set-Request PDUs which have been generated by the SNMP protocol entity." ::= { snmp 27 } snmpOutGetResponses OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Get-Response PDUs which have been generated by the SNMP protocol entity." ::= { snmp 28 } snmpOutTraps OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of SNMP Trap PDUs which have been generated by the SNMP protocol entity." ::= { snmp 29 } snmpEnableAuthenTraps OBJECT-TYPE SYNTAX INTEGER { enabled(1), disabled(2) } ACCESS read-write STATUS mandatory DESCRIPTION "Indicates whether the SNMP agent process is permitted to generate authentication-failure traps. The value of this object overrides any configuration information; as such, it provides a means whereby all authentication-failure traps may be disabled. Note that it is strongly recommended that this object be stored in non-volatile memory so that it remains constant between re-initializations of the network management system." ::= { snmp 30 } usecMIB OBJECT IDENTIFIER ::= { snmpModules 6 } usecMIBObjects OBJECT IDENTIFIER ::= { usecMIB 1 } usecAgent OBJECT IDENTIFIER ::= { usecMIBObjects 1 } agentID OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS current ::= { usecAgent 1 } agentBoots OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS current ::= { usecAgent 2 } agentTime OBJECT-TYPE SYNTAX Gauge UNITS "seconds" ACCESS read-only STATUS current ::= { usecAgent 3 } agentSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS current ::= { usecAgent 4 } usecStats OBJECT IDENTIFIER ::= { usecMIBObjects 2 } usecStatsUnsupportedQoS OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS current ::= { usecStats 1 } usecStatsNotInWindows OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS current ::= { usecStats 2 } usecStatsUnknownUserNames OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS current ::= { usecStats 3 } usecStatsWrongDigestValues OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS current ::= { usecStats 4 } usecStatsUnknownContextSelectors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS current ::= { usecStats 5 } cmu OBJECT IDENTIFIER ::= { enterprises 3 } systems OBJECT IDENTIFIER ::= { cmu 1 } mibs OBJECT IDENTIFIER ::= { cmu 2 } cmuSNMP OBJECT IDENTIFIER ::= { systems 1 } cmuKip OBJECT IDENTIFIER ::= { systems 2 } cmuRouter OBJECT IDENTIFIER ::= { systems 3 } HOST-RESOURCES-MIB DEFINITIONS ::= BEGIN IMPORTS OBJECT-TYPE FROM RFC-1212 DisplayString FROM RFC1213-MIB TimeTicks, Counter, Gauge FROM RFC1155-SMI; host OBJECT IDENTIFIER ::= { mib-2 25 } hrSystem OBJECT IDENTIFIER ::= { host 1 } hrStorage OBJECT IDENTIFIER ::= { host 2 } hrDevice OBJECT IDENTIFIER ::= { host 3 } hrSWRun OBJECT IDENTIFIER ::= { host 4 } hrSWRunPerf OBJECT IDENTIFIER ::= { host 5 } hrSWInstalled OBJECT IDENTIFIER ::= { host 6 } -- textual conventions -- a truth value Boolean ::= INTEGER { true(1), false(2) } -- memory size, expressed in units of 1024bytes KBytes ::= INTEGER (0..2147483647) -- This textual convention is intended to identify the manufacturer, -- model, and version of a specific hardware or software product. -- It is suggested that these OBJECT IDENTIFIERs are allocated such -- that all products from a particular manufacturer are registered -- under a subtree distinct to that manufacturer. In addition, all -- versions of a product should be registered under a subtree -- distinct to that product. With this strategy, a management -- station may uniquely determine the manufacturer and/or model of a -- product whose productID is unknown to the management station. -- Objects of this type may be useful for inventory purposes or for -- automatically detecting incompatibilities or version mismatches -- between various hardware and software components on a system. ProductID ::= OBJECT IDENTIFIER -- unknownProduct will be used for any unknown ProductID -- unknownProduct OBJECT IDENTIFIER ::= { 0 0 } -- For example, the product ID for the ACME 4860 66MHz clock doubled -- processor might be: -- enterprises.acme.acmeProcessors.a4860DX2.MHz66 -- A software product might be registered as: -- enterprises.acme.acmeOperatingSystems.acmeDOS.six(6).one(1) DateAndTime ::= OCTET STRING (SIZE (8 | 11)) -- A date-time specification for the local time of day. -- This data type is intended to provide a consistent -- method of reporting date information. -- -- field octets contents range -- _____ ______ ________ _____ -- 1 1-2 year 0..65536 -- (in network byte order) -- 2 3 month 1..12 -- 3 4 day 1..31 -- 4 5 hour 0..23 -- 5 6 minutes 0..59 -- 6 7 seconds 0..60 -- (use 60 for leap-second) -- 7 8 deci-seconds 0..9 -- 8 9 direction from UTC "+" / "-" -- (in ascii notation) -- 9 10 hours from UTC 0..11 -- 10 11 minutes from UTC 0..59 -- -- Note that if only local time is known, then -- timezone information (fields 8-10) is not present. InternationalDisplayString ::= OCTET STRING -- This data type is used to model textual information in some -- character set. A network management station should use a local -- algorithm to determine which character set is in use and how it -- should be displayed. Note that this character set may be encoded -- with more than one octet per symbol, but will most often be NVT -- ASCII. -- The Host Resources System Group -- -- Implementation of this group is mandatory for all host systems. hrSystemUptime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The amount of time since this host was last initialized. Note that this is different from sysUpTime in MIB-II [3] because sysUpTime is the uptime of the network management portion of the system." ::= { hrSystem 1 } hrSystemDate OBJECT-TYPE SYNTAX DateAndTime ACCESS read-write STATUS mandatory DESCRIPTION "The host's notion of the local date and time of day." ::= { hrSystem 2 } hrSystemInitialLoadDevice OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-write STATUS mandatory DESCRIPTION "The index of the hrDeviceEntry for the device from which this host is configured to load its initial operating system configuration." ::= { hrSystem 3 } hrSystemInitialLoadParameters OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE (0..128)) ACCESS read-write STATUS mandatory DESCRIPTION "This object contains the parameters (e.g. a pathname and parameter) supplied to the load device when requesting the initial operating system configuration from that device." ::= { hrSystem 4 } hrSystemNumUsers OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "The number of user sessions for which this host is storing state information. A session is a collection of processes requiring a single act of user authentication and possibly subject to collective job control." ::= { hrSystem 5 } hrSystemProcesses OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "The number of process contexts currently loaded or running on this system." ::= { hrSystem 6 } hrSystemMaxProcesses OBJECT-TYPE SYNTAX INTEGER (0..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "The maximum number of process contexts this system can support. If there is no fixed maximum, the value should be zero. On systems that have a fixed maximum, this object can help diagnose failures that occur when this maximum is reached." ::= { hrSystem 7 } -- The Host Resources Storage Group -- -- Implementation of this group is mandatory for all host systems. -- Registration for some storage types, for use with hrStorageType hrStorageTypes OBJECT IDENTIFIER ::= { hrStorage 1 } hrStorageOther OBJECT IDENTIFIER ::= { hrStorageTypes 1 } hrStorageRam OBJECT IDENTIFIER ::= { hrStorageTypes 2 } -- hrStorageVirtualMemory is temporary storage of swapped -- or paged memory hrStorageVirtualMemory OBJECT IDENTIFIER ::= { hrStorageTypes 3 } hrStorageFixedDisk OBJECT IDENTIFIER ::= { hrStorageTypes 4 } hrStorageRemovableDisk OBJECT IDENTIFIER ::= { hrStorageTypes 5 } hrStorageFloppyDisk OBJECT IDENTIFIER ::= { hrStorageTypes 6 } hrStorageCompactDisc OBJECT IDENTIFIER ::= { hrStorageTypes 7 } hrStorageRamDisk OBJECT IDENTIFIER ::= { hrStorageTypes 8 } hrMemorySize OBJECT-TYPE SYNTAX KBytes ACCESS read-only STATUS mandatory DESCRIPTION "The amount of physical main memory contained by the host." ::= { hrStorage 2 } hrStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrStorageEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of logical storage areas on the host. An entry shall be placed in the storage table for each logical area of storage that is allocated and has fixed resource limits. The amount of storage represented in an entity is the amount actually usable by the requesting entity, and excludes loss due to formatting or file system reference information. These entries are associated with logical storage areas, as might be seen by an application, rather than physical storage entities which are typically seen by an operating system. Storage such as tapes and floppies without file systems on them are typically not allocated in chunks by the operating system to requesting applications, and therefore shouldn't appear in this table. Examples of valid storage for this table include disk partitions, file systems, ram (for some architectures this is further segmented into regular memory, extended memory, and so on), backing store for virtual memory (`swap space'). This table is intended to be a useful diagnostic for `out of memory' and `out of buffers' types of failures. In addition, it can be a useful performance monitoring tool for tracking memory, disk, or buffer usage." ::= { hrStorage 3 } hrStorageEntry OBJECT-TYPE SYNTAX HrStorageEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one logical storage area on the host. As an example, an instance of the hrStorageType object might be named hrStorageType.3" INDEX { hrStorageIndex } ::= { hrStorageTable 1 } HrStorageEntry ::= SEQUENCE { hrStorageIndex INTEGER, hrStorageType OBJECT IDENTIFIER, hrStorageDescr DisplayString, hrStorageAllocationUnits INTEGER, hrStorageSize INTEGER, hrStorageUsed INTEGER, hrStorageAllocationFailures Counter } hrStorageIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each logical storage area contained by the host." ::= { hrStorageEntry 1 } hrStorageType OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-only STATUS mandatory DESCRIPTION "The type of storage represented by this entry." ::= { hrStorageEntry 2 } hrStorageDescr OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "A description of the type and instance of the storage described by this entry." ::= { hrStorageEntry 3 } hrStorageAllocationUnits OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "The size, in bytes, of the data objects allocated from this pool. If this entry is monitoring sectors, blocks, buffers, or packets, for example, this number will commonly be greater than one. Otherwise this number will typically be one." ::= { hrStorageEntry 4 } hrStorageSize OBJECT-TYPE SYNTAX INTEGER (0..2147483647) ACCESS read-write STATUS mandatory DESCRIPTION "The size of the storage represented by this entry, in units of hrStorageAllocationUnits." ::= { hrStorageEntry 5 } hrStorageUsed OBJECT-TYPE SYNTAX INTEGER (0..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "The amount of the storage represented by this entry that is allocated, in units of hrStorageAllocationUnits." ::= { hrStorageEntry 6 } hrStorageAllocationFailures OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of requests for storage represented by this entry that could not be honored due to not enough storage. It should be noted that as this object has a SYNTAX of Counter, that it does not have a defined initial value. However, it is recommended that this object be initialized to zero." ::= { hrStorageEntry 7 } -- The Host Resources Device Group -- -- Implementation of this group is mandatory for all host systems. -- -- The device group is useful for identifying and diagnosing the -- devices on a system. The hrDeviceTable contains common -- information for any type of device. In addition, some devices -- have device-specific tables for more detailed information. More -- such tables may be defined in the future for other device types. -- Registration for some device types, for use with hrDeviceType hrDeviceTypes OBJECT IDENTIFIER ::= { hrDevice 1 } hrDeviceOther OBJECT IDENTIFIER ::= { hrDeviceTypes 1 } hrDeviceUnknown OBJECT IDENTIFIER ::= { hrDeviceTypes 2 } hrDeviceProcessor OBJECT IDENTIFIER ::= { hrDeviceTypes 3 } hrDeviceNetwork OBJECT IDENTIFIER ::= { hrDeviceTypes 4 } hrDevicePrinter OBJECT IDENTIFIER ::= { hrDeviceTypes 5 } hrDeviceDiskStorage OBJECT IDENTIFIER ::= { hrDeviceTypes 6 } hrDeviceVideo OBJECT IDENTIFIER ::= { hrDeviceTypes 10 } hrDeviceAudio OBJECT IDENTIFIER ::= { hrDeviceTypes 11 } hrDeviceCoprocessor OBJECT IDENTIFIER ::= { hrDeviceTypes 12 } hrDeviceKeyboard OBJECT IDENTIFIER ::= { hrDeviceTypes 13 } hrDeviceModem OBJECT IDENTIFIER ::= { hrDeviceTypes 14 } hrDeviceParallelPort OBJECT IDENTIFIER ::= { hrDeviceTypes 15 } hrDevicePointing OBJECT IDENTIFIER ::= { hrDeviceTypes 16 } hrDeviceSerialPort OBJECT IDENTIFIER ::= { hrDeviceTypes 17 } hrDeviceTape OBJECT IDENTIFIER ::= { hrDeviceTypes 18 } hrDeviceClock OBJECT IDENTIFIER ::= { hrDeviceTypes 19 } hrDeviceVolatileMemory OBJECT IDENTIFIER ::= { hrDeviceTypes 20 } hrDeviceNonVolatileMemory OBJECT IDENTIFIER ::= { hrDeviceTypes 21 } hrDeviceTable OBJECT-TYPE SYNTAX SEQUENCE OF HrDeviceEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of devices contained by the host." ::= { hrDevice 2 } hrDeviceEntry OBJECT-TYPE SYNTAX HrDeviceEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one device contained by the host. As an example, an instance of the hrDeviceType object might be named hrDeviceType.3" INDEX { hrDeviceIndex } ::= { hrDeviceTable 1 } HrDeviceEntry ::= SEQUENCE { hrDeviceIndex INTEGER, hrDeviceType OBJECT IDENTIFIER, hrDeviceDescr DisplayString, hrDeviceID ProductID, hrDeviceStatus INTEGER, hrDeviceErrors Counter } hrDeviceIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each device contained by the host. The value for each device must remain constant at least from one re-initialization of the agent to the next re-initialization." ::= { hrDeviceEntry 1 } hrDeviceType OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-only STATUS mandatory DESCRIPTION "An indication of the type of device. If this value is `hrDeviceProcessor { hrDeviceTypes 3 }' then an entry exists in the hrProcessorTable which corresponds to this device. If this value is `hrDeviceNetwork { hrDeviceTypes 4 }', then an entry exists in the hrNetworkTable which corresponds to this device. If this value is `hrDevicePrinter { hrDeviceTypes 5 }', then an entry exists in the hrPrinterTable which corresponds to this device. If this value is `hrDeviceDiskStorage { hrDeviceTypes 6 }', then an entry exists in the hrDiskStorageTable which corresponds to this device." ::= { hrDeviceEntry 2 } hrDeviceDescr OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "A textual description of this device, including the device's manufacturer and revision, and optionally, its serial number." ::= { hrDeviceEntry 3 } hrDeviceID OBJECT-TYPE SYNTAX ProductID ACCESS read-only STATUS mandatory DESCRIPTION "The product ID for this device." ::= { hrDeviceEntry 4 } hrDeviceStatus OBJECT-TYPE SYNTAX INTEGER { unknown(1), running(2), warning(3), testing(4), down(5) } ACCESS read-only STATUS mandatory DESCRIPTION "The current operational state of the device described by this row of the table. A value unknown(1) indicates that the current state of the device is unknown. running(2) indicates that the device is up and running and that no unusual error conditions are known. The warning(3) state indicates that agent has been informed of an unusual error condition by the operational software (e.g., a disk device driver) but that the device is still 'operational'. An example would be high number of soft errors on a disk. A value of testing(4), indicates that the device is not available for use because it is in the testing state. The state of down(5) is used only when the agent has been informed that the device is not available for any use." ::= { hrDeviceEntry 5 } hrDeviceErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of errors detected on this device. It should be noted that as this object has a SYNTAX of Counter, that it does not have a defined initial value. However, it is recommended that this object be initialized to zero." ::= { hrDeviceEntry 6 } hrProcessorTable OBJECT-TYPE SYNTAX SEQUENCE OF HrProcessorEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of processors contained by the host. Note that this table is potentially sparse: a (conceptual) entry exists only if the correspondent value of the hrDeviceType object is `hrDeviceProcessor'." ::= { hrDevice 3 } hrProcessorEntry OBJECT-TYPE SYNTAX HrProcessorEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one processor contained by the host. The hrDeviceIndex in the index represents the entry in the hrDeviceTable that corresponds to the hrProcessorEntry. As an example of how objects in this table are named, an instance of the hrProcessorFrwID object might be named hrProcessorFrwID.3" INDEX { hrDeviceIndex } ::= { hrProcessorTable 1 } HrProcessorEntry ::= SEQUENCE { hrProcessorFrwID ProductID, hrProcessorLoad INTEGER } hrProcessorFrwID OBJECT-TYPE SYNTAX ProductID ACCESS read-only STATUS mandatory DESCRIPTION "The product ID of the firmware associated with the processor." ::= { hrProcessorEntry 1 } hrProcessorLoad OBJECT-TYPE SYNTAX INTEGER (0..100) ACCESS read-only STATUS mandatory DESCRIPTION "The average, over the last minute, of the percentage of time that this processor was not idle." ::= { hrProcessorEntry 2 } hrNetworkTable OBJECT-TYPE SYNTAX SEQUENCE OF HrNetworkEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of network devices contained by the host. Note that this table is potentially sparse: a (conceptual) entry exists only if the correspondent value of the hrDeviceType object is `hrDeviceNetwork'." ::= { hrDevice 4 } hrNetworkEntry OBJECT-TYPE SYNTAX HrNetworkEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one network device contained by the host. The hrDeviceIndex in the index represents the entry in the hrDeviceTable that corresponds to the hrNetworkEntry. As an example of how objects in this table are named, an instance of the hrNetworkIfIndex object might be named hrNetworkIfIndex.3" INDEX { hrDeviceIndex } ::= { hrNetworkTable 1 } HrNetworkEntry ::= SEQUENCE { hrNetworkIfIndex INTEGER } hrNetworkIfIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The value of ifIndex which corresponds to this network device." ::= { hrNetworkEntry 1 } hrPrinterTable OBJECT-TYPE SYNTAX SEQUENCE OF HrPrinterEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of printers local to the host. Note that this table is potentially sparse: a (conceptual) entry exists only if the correspondent value of the hrDeviceType object is `hrDevicePrinter'." ::= { hrDevice 5 } hrPrinterEntry OBJECT-TYPE SYNTAX HrPrinterEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one printer local to the host. The hrDeviceIndex in the index represents the entry in the hrDeviceTable that corresponds to the hrPrinterEntry. As an example of how objects in this table are named, an instance of the hrPrinterStatus object might be named hrPrinterStatus.3" INDEX { hrDeviceIndex } ::= { hrPrinterTable 1 } HrPrinterEntry ::= SEQUENCE { hrPrinterStatus INTEGER, hrPrinterDetectedErrorState OCTET STRING } hrPrinterStatus OBJECT-TYPE SYNTAX INTEGER { other(1), unknown(2), idle(3), printing(4), warmup(5) } ACCESS read-only STATUS mandatory DESCRIPTION "The current status of this printer device. When in the idle(1), printing(2), or warmup(3) state, the corresponding hrDeviceStatus should be running(2) or warning(3). When in the unknown state, the corresponding hrDeviceStatus should be unknown(1)." ::= { hrPrinterEntry 1 } hrPrinterDetectedErrorState OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "This object represents any error conditions detected by the printer. The error conditions are encoded as bits in an octet string, with the following definitions: Condition Bit # hrDeviceStatus lowPaper 0 warning(3) noPaper 1 down(5) lowToner 2 warning(3) noToner 3 down(5) doorOpen 4 down(5) jammed 5 down(5) offline 6 down(5) serviceRequested 7 warning(3) If multiple conditions are currently detected and the hrDeviceStatus would not otherwise be unknown(1) or testing(4), the hrDeviceStatus shall correspond to the worst state of those indicated, where down(5) is worse than warning(3) which is worse than running(2). Bits are numbered starting with the most significant bit of the first byte being bit 0, the least significant bit of the first byte being bit 7, the most significant bit of the second byte being bit 8, and so on. A one bit encodes that the condition was detected, while a zero bit encodes that the condition was not detected. This object is useful for alerting an operator to specific warning or error conditions that may occur, especially those requiring human intervention." ::= { hrPrinterEntry 2 } hrDiskStorageTable OBJECT-TYPE SYNTAX SEQUENCE OF HrDiskStorageEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of long-term storage devices contained by the host. In particular, disk devices accessed remotely over a network are not included here. Note that this table is potentially sparse: a (conceptual) entry exists only if the correspondent value of the hrDeviceType object is `hrDeviceDiskStorage'." ::= { hrDevice 6 } hrDiskStorageEntry OBJECT-TYPE SYNTAX HrDiskStorageEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one long-term storage device contained by the host. The hrDeviceIndex in the index represents the entry in the hrDeviceTable that corresponds to the hrDiskStorageEntry. As an example, an instance of the hrDiskStorageCapacity object might be named hrDiskStorageCapacity.3" INDEX { hrDeviceIndex } ::= { hrDiskStorageTable 1 } HrDiskStorageEntry ::= SEQUENCE { hrDiskStorageAccess INTEGER, hrDiskStorageMedia INTEGER, hrDiskStorageRemoveble Boolean, hrDiskStorageCapacity KBytes } hrDiskStorageAccess OBJECT-TYPE SYNTAX INTEGER { readWrite(1), readOnly(2) } ACCESS read-only STATUS mandatory DESCRIPTION "An indication if this long-term storage device is readable and writable or only readable. This should reflect the media type, any write-protect mechanism, and any device configuration that affects the entire device." ::= { hrDiskStorageEntry 1 } hrDiskStorageMedia OBJECT-TYPE SYNTAX INTEGER { other(1), unknown(2), hardDisk(3), floppyDisk(4), opticalDiskROM(5), opticalDiskWORM(6), -- Write Once Read Many opticalDiskRW(7), ramDisk(8) } ACCESS read-only STATUS mandatory DESCRIPTION "An indication of the type of media used in this long-term storage device." ::= { hrDiskStorageEntry 2 } hrDiskStorageRemoveble OBJECT-TYPE SYNTAX Boolean ACCESS read-only STATUS mandatory DESCRIPTION "Denotes whether or not the disk media may be removed from the drive." ::= { hrDiskStorageEntry 3 } hrDiskStorageCapacity OBJECT-TYPE SYNTAX KBytes ACCESS read-only STATUS mandatory DESCRIPTION "The total size for this long-term storage device." ::= { hrDiskStorageEntry 4 } hrPartitionTable OBJECT-TYPE SYNTAX SEQUENCE OF HrPartitionEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of partitions for long-term storage devices contained by the host. In particular, partitions accessed remotely over a network are not included here." ::= { hrDevice 7 } hrPartitionEntry OBJECT-TYPE SYNTAX HrPartitionEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one partition. The hrDeviceIndex in the index represents the entry in the hrDeviceTable that corresponds to the hrPartitionEntry. As an example of how objects in this table are named, an instance of the hrPartitionSize object might be named hrPartitionSize.3.1" INDEX { hrDeviceIndex, hrPartitionIndex } ::= { hrPartitionTable 1 } HrPartitionEntry ::= SEQUENCE { hrPartitionIndex INTEGER, hrPartitionLabel InternationalDisplayString, hrPartitionID OCTET STRING, hrPartitionSize KBytes, hrPartitionFSIndex INTEGER } hrPartitionIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each partition on this long- term storage device. The value for each long-term storage device must remain constant at least from one re-initialization of the agent to the next re- initialization." ::= { hrPartitionEntry 1 } hrPartitionLabel OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE (0..128)) ACCESS read-only STATUS mandatory DESCRIPTION "A textual description of this partition." ::= { hrPartitionEntry 2 } hrPartitionID OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "A descriptor which uniquely represents this partition to the responsible operating system. On some systems, this might take on a binary representation." ::= { hrPartitionEntry 3 } hrPartitionSize OBJECT-TYPE SYNTAX KBytes ACCESS read-only STATUS mandatory DESCRIPTION "The size of this partition." ::= { hrPartitionEntry 4 } hrPartitionFSIndex OBJECT-TYPE SYNTAX INTEGER (0..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "The index of the file system mounted on this partition. If no file system is mounted on this partition, then this value shall be zero. Note that multiple partitions may point to one file system, denoting that that file system resides on those partitions. Multiple file systems may not reside on one partition." ::= { hrPartitionEntry 5 } -- The File System Table hrFSTable OBJECT-TYPE SYNTAX SEQUENCE OF HrFSEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of file systems local to this host or remotely mounted from a file server. File systems that are in only one user's environment on a multi-user system will not be included in this table." ::= { hrDevice 8 } hrFSEntry OBJECT-TYPE SYNTAX HrFSEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one file system local to this host or remotely mounted from a file server. File systems that are in only one user's environment on a multi-user system will not be included in this table. As an example of how objects in this table are named, an instance of the hrFSMountPoint object might be named hrFSMountPoint.3" INDEX { hrFSIndex } ::= { hrFSTable 1 } -- Registration for some popular File System types, -- for use with hrFSType. hrFSTypes OBJECT IDENTIFIER ::= { hrDevice 9 } hrFSOther OBJECT IDENTIFIER ::= { hrFSTypes 1 } hrFSUnknown OBJECT IDENTIFIER ::= { hrFSTypes 2 } hrFSBerkeleyFFS OBJECT IDENTIFIER ::= { hrFSTypes 3 } hrFSSys5FS OBJECT IDENTIFIER ::= { hrFSTypes 4 } -- DOS hrFSFat OBJECT IDENTIFIER ::= { hrFSTypes 5 } -- OS/2 High Performance File System hrFSHPFS OBJECT IDENTIFIER ::= { hrFSTypes 6 } -- Macintosh Hierarchical File System hrFSHFS OBJECT IDENTIFIER ::= { hrFSTypes 7 } -- Macintosh File System hrFSMFS OBJECT IDENTIFIER ::= { hrFSTypes 8 } -- Windows NT hrFSNTFS OBJECT IDENTIFIER ::= { hrFSTypes 9 } hrFSVNode OBJECT IDENTIFIER ::= { hrFSTypes 10 } hrFSJournaled OBJECT IDENTIFIER ::= { hrFSTypes 11 } -- CD File systems hrFSiso9660 OBJECT IDENTIFIER ::= { hrFSTypes 12 } hrFSRockRidge OBJECT IDENTIFIER ::= { hrFSTypes 13 } hrFSNFS OBJECT IDENTIFIER ::= { hrFSTypes 14 } hrFSNetware OBJECT IDENTIFIER ::= { hrFSTypes 15 } -- Andrew File System hrFSAFS OBJECT IDENTIFIER ::= { hrFSTypes 16 } -- OSF DCE Distributed File System hrFSDFS OBJECT IDENTIFIER ::= { hrFSTypes 17 } hrFSAppleshare OBJECT IDENTIFIER ::= { hrFSTypes 18 } hrFSRFS OBJECT IDENTIFIER ::= { hrFSTypes 19 } -- Data General hrFSDGCFS OBJECT IDENTIFIER ::= { hrFSTypes 20 } -- SVR4 Boot File System hrFSBFS OBJECT IDENTIFIER ::= { hrFSTypes 21 } HrFSEntry ::= SEQUENCE { hrFSIndex INTEGER, hrFSMountPoint InternationalDisplayString, hrFSRemoteMountPoint InternationalDisplayString, hrFSType OBJECT IDENTIFIER, hrFSAccess INTEGER, hrFSBootable Boolean, hrFSStorageIndex INTEGER, hrFSLastFullBackupDate DateAndTime, hrFSLastPartialBackupDate DateAndTime } hrFSIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each file system local to this host. The value for each file system must remain constant at least from one re-initialization of the agent to the next re-initialization." ::= { hrFSEntry 1 } hrFSMountPoint OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE(0..128)) ACCESS read-only STATUS mandatory DESCRIPTION "The path name of the root of this file system." ::= { hrFSEntry 2 } hrFSRemoteMountPoint OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE(0..128)) ACCESS read-only STATUS mandatory DESCRIPTION "A description of the name and/or address of the server that this file system is mounted from. This may also include parameters such as the mount point on the remote file system. If this is not a remote file system, this string should have a length of zero." ::= { hrFSEntry 3 } hrFSType OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-only STATUS mandatory DESCRIPTION "The value of this object identifies the type of this file system." ::= { hrFSEntry 4 } hrFSAccess OBJECT-TYPE SYNTAX INTEGER { readWrite(1), readOnly(2) } ACCESS read-only STATUS mandatory DESCRIPTION "An indication if this file system is logically configured by the operating system to be readable and writable or only readable. This does not represent any local access-control policy, except one that is applied to the file system as a whole." ::= { hrFSEntry 5 } hrFSBootable OBJECT-TYPE SYNTAX Boolean ACCESS read-only STATUS mandatory DESCRIPTION "A flag indicating whether this file system is bootable." ::= { hrFSEntry 6 } hrFSStorageIndex OBJECT-TYPE SYNTAX INTEGER (0..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "The index of the hrStorageEntry that represents information about this file system. If there is no such information available, then this value shall be zero. The relevant storage entry will be useful in tracking the percent usage of this file system and diagnosing errors that may occur when it runs out of space." ::= { hrFSEntry 7 } hrFSLastFullBackupDate OBJECT-TYPE SYNTAX DateAndTime ACCESS read-write STATUS mandatory DESCRIPTION "The last date at which this complete file system was copied to another storage device for backup. This information is useful for ensuring that backups are being performed regularly. If this information is not known, then this variable shall have the value corresponding to January 1, year 0000, 00:00:00.0, which is encoded as (hex)'00 00 01 01 00 00 00 00'." ::= { hrFSEntry 8 } hrFSLastPartialBackupDate OBJECT-TYPE SYNTAX DateAndTime ACCESS read-write STATUS mandatory DESCRIPTION "The last date at which a portion of this file system was copied to another storage device for backup. This information is useful for ensuring that backups are being performed regularly. If this information is not known, then this variable shall have the value corresponding to January 1, year 0000, 00:00:00.0, which is encoded as (hex)'00 00 01 01 00 00 00 00'." ::= { hrFSEntry 9 } -- The Host Resources Running Software Group -- -- Implementation of this group is optional. -- -- The hrSWRunTable contains an entry for each distinct piece of -- software that is running or loaded into physical or virtual -- memory in preparation for running. This includes the host's -- operating system, device drivers, and applications. hrSWOSIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "The value of the hrSWRunIndex for the hrSWRunEntry that represents the primary operating system running on this host. This object is useful for quickly and uniquely identifying that primary operating system." ::= { hrSWRun 1 } hrSWRunTable OBJECT-TYPE SYNTAX SEQUENCE OF HrSWRunEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of software running on the host." ::= { hrSWRun 2 } hrSWRunEntry OBJECT-TYPE SYNTAX HrSWRunEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for one piece of software running on the host Note that because the installed software table only contains information for software stored locally on this host, not every piece of running software will be found in the installed software table. This is true of software that was loaded and run from a non-local source, such as a network-mounted file system. As an example of how objects in this table are named, an instance of the hrSWRunName object might be named hrSWRunName.1287" INDEX { hrSWRunIndex } ::= { hrSWRunTable 1 } HrSWRunEntry ::= SEQUENCE { hrSWRunIndex INTEGER, hrSWRunName InternationalDisplayString, hrSWRunID ProductID, hrSWRunPath InternationalDisplayString, hrSWRunParameters InternationalDisplayString, hrSWRunType INTEGER, hrSWRunStatus INTEGER } hrSWRunIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each piece of software running on the host. Wherever possible, this should be the system's native, unique identification number." ::= { hrSWRunEntry 1 } hrSWRunName OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE (0..64)) ACCESS read-only STATUS mandatory DESCRIPTION "A textual description of this running piece of software, including the manufacturer, revision, and the name by which it is commonly known. If this software was installed locally, this should be the same string as used in the corresponding hrSWInstalledName." ::= { hrSWRunEntry 2 } hrSWRunID OBJECT-TYPE SYNTAX ProductID ACCESS read-only STATUS mandatory DESCRIPTION "The product ID of this running piece of software." ::= { hrSWRunEntry 3 } hrSWRunPath OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE(0..128)) ACCESS read-only STATUS mandatory DESCRIPTION "A description of the location on long-term storage (e.g. a disk drive) from which this software was loaded." ::= { hrSWRunEntry 4 } hrSWRunParameters OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE(0..128)) ACCESS read-only STATUS mandatory DESCRIPTION "A description of the parameters supplied to this software when it was initially loaded." ::= { hrSWRunEntry 5 } hrSWRunType OBJECT-TYPE SYNTAX INTEGER { unknown(1), operatingSystem(2), deviceDriver(3), application(4) } ACCESS read-only STATUS mandatory DESCRIPTION "The type of this software." ::= { hrSWRunEntry 6 } hrSWRunStatus OBJECT-TYPE SYNTAX INTEGER { running(1), runnable(2), -- waiting for resource (CPU, memory, IO) notRunnable(3), -- loaded but waiting for event invalid(4) -- not loaded } ACCESS read-write STATUS mandatory DESCRIPTION "The status of this running piece of software. Setting this value to invalid(4) shall cause this software to stop running and to be unloaded." ::= { hrSWRunEntry 7 } -- The Host Resources Running Software Performance Group -- Implementation of this group is optional. -- -- The hrSWRunPerfTable contains an entry corresponding to -- each entry in the hrSWRunTable. hrSWRunPerfTable OBJECT-TYPE SYNTAX SEQUENCE OF HrSWRunPerfEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of running software performance metrics." ::= { hrSWRunPerf 1 } hrSWRunPerfEntry OBJECT-TYPE SYNTAX HrSWRunPerfEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry containing software performance metrics. As an example, an instance of the hrSWRunPerfCPU object might be named hrSWRunPerfCPU.1287" INDEX { hrSWRunIndex } -- This table augments information in -- the hrSWRunTable. ::= { hrSWRunPerfTable 1 } HrSWRunPerfEntry ::= SEQUENCE { hrSWRunPerfCPU INTEGER, hrSWRunPerfMem KBytes } hrSWRunPerfCPU OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of centi-seconds of the total system's CPU resources consumed by this process. Note that on a multi-processor system, this value may increment by more than one centi-second in one centi-second of real (wall clock) time." ::= { hrSWRunPerfEntry 1 } hrSWRunPerfMem OBJECT-TYPE SYNTAX KBytes ACCESS read-only STATUS mandatory DESCRIPTION "The total amount of real system memory allocated to this process." ::= { hrSWRunPerfEntry 2 } -- The Host Resources Installed Software Group -- -- Implementation of this group is optional. -- -- The hrSWInstalledTable contains an entry for each piece -- of software installed in long-term storage (e.g. a disk -- drive) locally on this host. Note that this does not -- include software loadable remotely from a network -- server. -- -- This table is useful for identifying and inventorying -- software on a host and for diagnosing incompatibility -- and version mismatch problems between various pieces -- of hardware and software. hrSWInstalledLastChange OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when an entry in the hrSWInstalledTable was last added, renamed, or deleted. Because this table is likely to contain many entries, polling of this object allows a management station to determine when re-downloading of the table might be useful." ::= { hrSWInstalled 1 } hrSWInstalledLastUpdateTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when the hrSWInstalledTable was last completely updated. Because caching of this data will be a popular implementation strategy, retrieval of this object allows a management station to obtain a guarantee that no data in this table is older than the indicated time." ::= { hrSWInstalled 2 } hrSWInstalledTable OBJECT-TYPE SYNTAX SEQUENCE OF HrSWInstalledEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "The (conceptual) table of software installed on this host." ::= { hrSWInstalled 3 } hrSWInstalledEntry OBJECT-TYPE SYNTAX HrSWInstalledEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A (conceptual) entry for a piece of software installed on this host. As an example of how objects in this table are named, an instance of the hrSWInstalledName object might be named hrSWInstalledName.96" INDEX { hrSWInstalledIndex } ::= { hrSWInstalledTable 1 } HrSWInstalledEntry ::= SEQUENCE { hrSWInstalledIndex INTEGER, hrSWInstalledName InternationalDisplayString, hrSWInstalledID ProductID, hrSWInstalledType INTEGER, hrSWInstalledDate DateAndTime } hrSWInstalledIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each piece of software installed on the host. This value shall be in the range from 1 to the number of pieces of software installed on the host." ::= { hrSWInstalledEntry 1 } hrSWInstalledName OBJECT-TYPE SYNTAX InternationalDisplayString (SIZE (0..64)) ACCESS read-only STATUS mandatory DESCRIPTION "A textual description of this installed piece of software, including the manufacturer, revision, the name by which it is commonly known, and optionally, its serial number." ::= { hrSWInstalledEntry 2 } hrSWInstalledID OBJECT-TYPE SYNTAX ProductID ACCESS read-only STATUS mandatory DESCRIPTION "The product ID of this installed piece of software." ::= { hrSWInstalledEntry 3 } hrSWInstalledType OBJECT-TYPE SYNTAX INTEGER { unknown(1), operatingSystem(2), deviceDriver(3), application(4) } ACCESS read-only STATUS mandatory DESCRIPTION "The type of this software." ::= { hrSWInstalledEntry 4 } hrSWInstalledDate OBJECT-TYPE SYNTAX DateAndTime ACCESS read-only STATUS mandatory DESCRIPTION "The last-modification date of this application as it would appear in a directory listing." ::= { hrSWInstalledEntry 5 } END RFC1414-MIB DEFINITIONS ::= BEGIN IMPORTS OBJECT-TYPE FROM RFC-1212 tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress, tcpConnRemPort FROM RFC1213-MIB; ident OBJECT IDENTIFIER ::= { mib-2 24 } -- conformance groups identInfo OBJECT IDENTIFIER ::= { ident 1 } -- textual conventions -- none -- the ident information system group -- -- implementation of this group is mandatory identTable OBJECT-TYPE SYNTAX SEQUENCE OF IdentEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A table containing user information for TCP connections. Note that this table contains entries for all TCP connections on a managed system. The corresponding instance of tcpConnState (defined in MIB-II) indicates the state of a particular connection." ::= { identInfo 1 } identEntry OBJECT-TYPE SYNTAX IdentEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "User information about a particular TCP connection." INDEX { tcpConnLocalAddress, tcpConnLocalPort, tcpConnRemAddress, tcpConnRemPort } ::= { identTable 1 } IdentEntry ::= SEQUENCE { identStatus INTEGER, identOpSys OCTET STRING, identCharset OCTET STRING, identUserid OCTET STRING, identMisc OCTET STRING } identStatus OBJECT-TYPE SYNTAX INTEGER { noError(1), unknownError(2) } ACCESS read-only STATUS mandatory DESCRIPTION "Indicates whether user information for the associated TCP connection can be determined. A value of `noError(1)' indicates that user information is available. A value of `unknownError(2)' indicates that user information is not available." ::= { identEntry 1 } identOpSys OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..40)) ACCESS read-only STATUS mandatory DESCRIPTION "Indicates the type of operating system in use. In addition to identifying an operating system, each assignment made for this purpose also (implicitly) identifies the textual format and maximum size of the corresponding identUserid and identMisc objects. The legal values for the `indentOpSys' strings are those listed in the SYSTEM NAMES section of the most recent edition of the ASSIGNED NUMBERS RFC [8]." ::= { identEntry 2 } identCharset OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..40)) ACCESS read-only STATUS mandatory DESCRIPTION "Indicates the repertoire of the corresponding identUserid and identMisc objects. The legal values for the `identCharset' strings are those listed in the CHARACTER SET section of the most recent edition of the ASSIGNED NUMBERS RFC [8]." ::= { identEntry 3 } identUserid OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..255)) ACCESS read-only STATUS mandatory DESCRIPTION "Indicates the user's identity. Interpretation of this object requires examination of the corresponding value of the identOpSys and identCharset objects." ::= { identEntry 4 } identMisc OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..255)) ACCESS read-only STATUS mandatory DESCRIPTION "Indicates miscellaneous information about the user. Interpretation of this object requires examination of the corresponding value of the identOpSys and identCharset objects." ::= { identEntry 5 } END TUBS-LINUX-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, enterprises, Counter32, Integer32, TimeTicks, Unsigned32 FROM SNMPv2-SMI DisplayString, RowStatus, DateAndTime, TruthValue, TimeStamp, TAddress FROM SNMPv2-TC; linuxMIB MODULE-IDENTITY LAST-UPDATED "9607182024Z" ORGANIZATION "TU Braunschweig" CONTACT-INFO " Juergen Schoenwaelder Postal: TU Braunschweig Bueltenweg 74/75 D-38108 Braunschweig GERMANY Tel: +49 531 391 3249 Fax: +49 531 391 5936 E-mail: schoenw@ibr.cs.tu-bs.de" DESCRIPTION "Experimental MIB modules for the linux operating system." ::= { enterprises tubs(1575) ibr(1) 5 } tubs OBJECT IDENTIFIER ::= { enterprises 1575 } ibr OBJECT IDENTIFIER ::= { tubs 1 } -- linuxMIB OBJECT IDENTIFIER ::= { ibr 5 } linuxAgents OBJECT IDENTIFIER ::= { linuxMIB 1 } linuxMIBObjects OBJECT IDENTIFIER ::= { linuxMIB 2 } linuxCPU OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "The identification of the linux CPU." ::= { linuxMIBObjects 1 } linuxBogo OBJECT-TYPE SYNTAX Gauge32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of BOGO MIPS of the linux system." ::= { linuxMIBObjects 2 } -- conformance information linuxMIBConformance OBJECT IDENTIFIER ::= { linuxMIB 3 } linuxMIBCompliances OBJECT IDENTIFIER ::= { linuxMIBConformance 1 } linuxMIBGroups OBJECT IDENTIFIER ::= { linuxMIBConformance 2 } END -- Copyright 1997 by Livingston Enterprises. All rights reserved -- MIB file name livingston-pm -- Available in the PortMaster devices -- For any additional information check www.livingston.com livingston-pm-MIB DEFINITIONS ::= BEGIN IMPORTS enterprises FROM RFC1155-SMI OBJECT-TYPE FROM RFC-1212 DisplayString FROM RFC1213-MIB TimeTicks, IpAddress, Counter, Gauge FROM RFC1155-SMI; livingston OBJECT IDENTIFIER ::= { enterprises 307 } products OBJECT IDENTIFIER ::= { livingston 2 } livingstonMib OBJECT IDENTIFIER ::= { livingston 3 } livingstonPortMaster OBJECT IDENTIFIER ::= { products 1 } livingstonSystem OBJECT IDENTIFIER ::= { livingstonMib 1 } livingstonInterfaces OBJECT IDENTIFIER ::= { livingstonMib 2 } livingstonAt OBJECT IDENTIFIER ::= { livingstonMib 3 } livingstonIp OBJECT IDENTIFIER ::= { livingstonMib 4 } livingstonIcmp OBJECT IDENTIFIER ::= { livingstonMib 5 } livingstonTcp OBJECT IDENTIFIER ::= { livingstonMib 6 } livingstonUdp OBJECT IDENTIFIER ::= { livingstonMib 7 } livingstonLocations OBJECT IDENTIFIER ::= { livingstonMib 12 } livingstonUsers OBJECT IDENTIFIER ::= { livingstonMib 13 } -- the Livingston Interfaces Group livingstonSerial OBJECT IDENTIFIER ::= { livingstonInterfaces 1 } livingstonT1E1 OBJECT IDENTIFIER ::= { livingstonInterfaces 2 } -- the Livingston serial interface table livingstonSerialTable OBJECT-TYPE SYNTAX SEQUENCE OF LivingstonSerialEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of serial interface entries." ::= { livingstonSerial 1 } livingstonSerialEntry OBJECT-TYPE SYNTAX LivingstonSerialEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A serial interface entry containing objects at the physical and session layer." INDEX { livingstonSerialIndex } ::= { livingstonSerialTable 1 } LivingstonSerialEntry ::= SEQUENCE { livingstonSerialIndex INTEGER, livingstonSerialPortName DisplayString, livingstonSerialPhysType INTEGER, livingstonSerialUser DisplayString, livingstonSerialSessionId DisplayString, livingstonSerialType INTEGER, livingstonSerialDirection INTEGER, livingstonSerialPortStatus INTEGER, livingstonSerialStarted TimeTicks, livingstonSerialIdle TimeTicks, livingstonSerialInSpeed Gauge, livingstonSerialOutSpeed Gauge, livingstonSerialModemName DisplayString, livingstonSerialIpAddress IpAddress, livingstonSerialifDescr DisplayString, livingstonSerialInOctets Counter, livingstonSerialOutOctets Counter, livingstonSerialQOctets Counter, livingstonSerialModemStatus INTEGER, livingstonSerialModemCompression INTEGER, livingstonSerialModemProtocol INTEGER, livingstonSerialModemRetrains Counter, livingstonSerialModemRenegotiates Counter } livingstonSerialIndex OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each serial interface." ::= { livingstonSerialEntry 1 } livingstonSerialPortName OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "A textual string containing the name of the serial interface (ie. S0, W1, etc)." ::= { livingstonSerialEntry 2 } livingstonSerialPhysType OBJECT-TYPE SYNTAX INTEGER { other(1), -- none of the following async(2), sync(3), isdn(4), TrueDigital(5), isdnV120(6), isdnSync(7) } ACCESS read-only STATUS mandatory DESCRIPTION "The type of physical serial interface, distinguished according to the physical/link protocol(s) being currently used on the interface." ::= { livingstonSerialEntry 3 } livingstonSerialUser OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "Name of the active user. Blank if not active." ::= { livingstonSerialEntry 4 } livingstonSerialSessionId OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "A unique Session Identifier which matches the RADIUS session ID. Blank when not using RADIUS." ::= { livingstonSerialEntry 5 } livingstonSerialType OBJECT-TYPE SYNTAX INTEGER { network(1), login(2), device(3), twoway(4) } ACCESS read-only STATUS mandatory DESCRIPTION "The active type of service being provided by the serial interface." ::= { livingstonSerialEntry 6 } livingstonSerialDirection OBJECT-TYPE SYNTAX INTEGER { in(1), out(2), inout(3) } ACCESS read-only STATUS mandatory DESCRIPTION "The direction the active session was initiated." ::= { livingstonSerialEntry 7 } livingstonSerialPortStatus OBJECT-TYPE SYNTAX INTEGER { idle(1), connecting(2), established(3), disconnecting(4), command(5), noservice(6) } ACCESS read-only STATUS mandatory DESCRIPTION "The status of the serial interface." ::= { livingstonSerialEntry 8 } livingstonSerialStarted OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The amount of time this session has been active." ::= { livingstonSerialEntry 9 } livingstonSerialIdle OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The amount of time this session has been idle." ::= { livingstonSerialEntry 10 } livingstonSerialInSpeed OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "An estimate of the serial interface's current inbound bandwidth in bits per second." ::= { livingstonSerialEntry 11 } livingstonSerialOutSpeed OBJECT-TYPE SYNTAX Gauge ACCESS read-only STATUS mandatory DESCRIPTION "An estimate of the serial interface's current outbound bandwidth in bits per second." ::= { livingstonSerialEntry 12 } livingstonSerialModemName OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "A textual string containing the name of the True Digital modem being used by the serial interface." ::= { livingstonSerialEntry 13 } livingstonSerialIpAddress OBJECT-TYPE SYNTAX IpAddress ACCESS read-only STATUS mandatory DESCRIPTION "The IP address associated with the serial interface. If being used as a network type port, this is the remote user's IP address. If being used as a device or login, this is the IP address of the host the user is connected to." ::= { livingstonSerialEntry 14 } livingstonSerialifDescr OBJECT-TYPE SYNTAX DisplayString ACCESS read-only STATUS mandatory DESCRIPTION "A textual string containing information about the network interface bound to the serial interface." ::= { livingstonSerialEntry 15 } livingstonSerialInOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets received on the serial interface." ::= { livingstonSerialEntry 16 } livingstonSerialOutOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets transmitted on the serial interface." ::= { livingstonSerialEntry 17 } livingstonSerialQOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets queued on the serial interface." ::= { livingstonSerialEntry 18 } livingstonSerialModemStatus OBJECT-TYPE SYNTAX INTEGER { none(1), bound(2), connecting(3), active(4), test(5), down(6), ready(7), halt(8), admin(9) } ACCESS read-only STATUS mandatory DESCRIPTION "The status of the modem being used by the serial interface." ::= { livingstonSerialEntry 19 } livingstonSerialModemCompression OBJECT-TYPE SYNTAX INTEGER { none(1), v42bis(2), mnp5(3), stac(4) } ACCESS read-only STATUS mandatory DESCRIPTION "The compression being used in the modem or by the serial interface." ::= { livingstonSerialEntry 20 } livingstonSerialModemProtocol OBJECT-TYPE SYNTAX INTEGER { none(1), lapm(2), mnp(3) } ACCESS read-only STATUS mandatory DESCRIPTION "The error correcting protocol being used in the modem or by the serial interface." ::= { livingstonSerialEntry 21 } livingstonSerialModemRetrains OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of retrains attempted by the modem attached to the serial interface." ::= { livingstonSerialEntry 22 } livingstonSerialModemRenegotiates OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of renegotiates attempted by the modem attached to the serial interface." ::= { livingstonSerialEntry 23 } -- the Livingston T1/E1 interface table. This table provides -- configuration and statistics for the Livingston integrated -- T1 and E1 direct telco interfaces. livingstonT1E1Table OBJECT-TYPE SYNTAX SEQUENCE OF LivingstonT1E1Entry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of T1/E1 interface entries." ::= { livingstonT1E1 1 } livingstonT1E1Entry OBJECT-TYPE SYNTAX LivingstonT1E1Entry ACCESS not-accessible STATUS mandatory DESCRIPTION "A T1/E1 entry containing objects at the physical layer." INDEX { livingstonT1E1Index } ::= { livingstonT1E1Table 1 } LivingstonT1E1Entry ::= SEQUENCE { livingstonT1E1Index INTEGER, livingstonT1E1PhysType INTEGER, livingstonT1E1Function INTEGER, livingstonT1E1Status INTEGER, livingstonT1E1Framing INTEGER, livingstonT1E1Encoding INTEGER, livingstonT1E1PCM INTEGER, livingstonT1E1UpTime TimeTicks, livingstonT1E1RecvLevel Gauge, livingstonT1E1BlueAlarms Counter, livingstonT1E1YellowAlarms Counter, livingstonT1E1CarrierLoss Counter, livingstonT1E1SyncLoss Counter, livingstonT1E1BipolarErrors Counter, livingstonT1E1CRCErrors Counter, livingstonT1E1SyncErrors Counter } livingstonT1E1Index OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "A unique value for each T1/E1 interface." ::= { livingstonT1E1Entry 1 } livingstonT1E1PhysType OBJECT-TYPE SYNTAX INTEGER { T1(1), E1(2) } ACCESS read-only STATUS mandatory DESCRIPTION "The type of interface (T1 or E1)." ::= { livingstonT1E1Entry 2 } livingstonT1E1Function OBJECT-TYPE SYNTAX INTEGER { isdn(1), channelized(2), clear(3), fractional(4) } ACCESS read-only STATUS mandatory DESCRIPTION "The configured function of the interface." ::= { livingstonT1E1Entry 3 } livingstonT1E1Status OBJECT-TYPE SYNTAX INTEGER { up(1), down(2), loopback(3) } ACCESS read-only STATUS mandatory DESCRIPTION "The current operational status of the interface." ::= { livingstonT1E1Entry 4 } livingstonT1E1Framing OBJECT-TYPE SYNTAX INTEGER { esf(1), d4(2), crc4(3), fas(4) } ACCESS read-only STATUS mandatory DESCRIPTION "The configured line framing." ::= { livingstonT1E1Entry 5 } livingstonT1E1Encoding OBJECT-TYPE SYNTAX INTEGER { ami(1), b8zs(2), hdb3(3) } ACCESS read-only STATUS mandatory DESCRIPTION "The configured line signal encoding." ::= { livingstonT1E1Entry 6 } livingstonT1E1PCM OBJECT-TYPE SYNTAX INTEGER { ulaw(1), alaw(2) } ACCESS read-only STATUS mandatory DESCRIPTION "The configured voice modulation." ::= { livingstonT1E1Entry 7 } livingstonT1E1ChangeTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The amount of time this interface has been up or down." ::= { livingstonT1E1Entry 8 } livingstonT1E1RecvLevel OBJECT-TYPE SYNTAX INTEGER { +2.5dBto-7.5dB(1), -7.5dBto-15dB(2), -15dBto-22.5dB(3), less-22.5dB(4) } ACCESS read-only STATUS mandatory DESCRIPTION "An estimate of the serial interface's current recieve signal level in DB." ::= { livingstonT1E1Entry 9 } livingstonT1E1BlueAlarms OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of Blue Alarms on the interface." ::= { livingstonT1E1Entry 10 } livingstonT1E1YellowAlarms OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of Yellow Alarms on the interface." ::= { livingstonT1E1Entry 11 } livingstonT1E1CarrierLoss OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of times the interface has lost carrier." ::= { livingstonT1E1Entry 12 } livingstonT1E1SyncLoss OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of times the interface has lost frame synchronization." ::= { livingstonT1E1Entry 13 } livingstonT1E1BipolarErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of bipolar violations detected on the interface." ::= { livingstonT1E1Entry 14 } livingstonT1E1CRCErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of frame level CRC errors detected on the interface." ::= { livingstonT1E1Entry 15 } livingstonT1E1SyncErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of frame synchronization errors detected on the interface." ::= { livingstonT1E1Entry 16 } END RMON-MIB DEFINITIONS ::= BEGIN IMPORTS Counter FROM RFC1155-SMI DisplayString FROM RFC1158-MIB mib-2 FROM RFC1213-MIB OBJECT-TYPE FROM RFC-1212 TRAP-TYPE FROM RFC-1215; -- Remote Network Monitoring MIB rmon OBJECT IDENTIFIER ::= { mib-2 16 } -- textual conventions OwnerString ::= OCTET STRING -- This data type is used to model an administratively -- assigned name of the owner of a resource. This -- information is taken from the NVT ASCII character -- set. It is suggested that this name contain one or -- more of the following: IP address, management station -- name, network manager's name, location, or phone -- number. -- In some cases the agent itself will be the owner of -- an entry. In these cases, this string shall be set -- to a string starting with 'monitor'. -- -- SNMP access control is articulated entirely in terms -- of the contents of MIB views; access to a particular -- SNMP object instance depends only upon its presence -- or absence in a particular MIB view and never upon -- its value or the value of related object instances. -- Thus, objects of this type afford resolution of -- resource contention only among cooperating managers; -- they realize no access control function with respect -- to uncooperative parties. -- -- By convention, objects with this syntax are declared as -- having -- -- SIZE (0..127) EntryStatus ::= INTEGER { valid(1), createRequest(2), underCreation(3), invalid(4) } -- The status of a table entry. -- -- Setting this object to the value invalid(4) has the -- effect of invalidating the corresponding entry. -- That is, it effectively disassociates the mapping -- identified with said entry. -- It is an implementation-specific matter as to whether -- the agent removes an invalidated entry from the table. -- Accordingly, management stations must be prepared to -- receive tabular information from agents that -- corresponds to entries currently not in use. Proper -- interpretation of such entries requires examination -- of the relevant EntryStatus object. -- -- An existing instance of this object cannot be set to -- createRequest(2). This object may only be set to -- createRequest(2) when this instance is created. When -- this object is created, the agent may wish to create -- supplemental object instances with default values -- to complete a conceptual row in this table. Because -- the creation of these default objects is entirely at -- the option of the agent, the manager must not assume -- that any will be created, but may make use of any that -- are created. Immediately after completing the create -- operation, the agent must set this object to -- underCreation(3). -- -- When in the underCreation(3) state, an entry is -- allowed to exist in a possibly incomplete, possibly -- inconsistent state, usually to allow it to be -- modified in mutiple PDUs. When in this state, an -- entry is not fully active. Entries shall exist in -- the underCreation(3) state until the management -- station is finished configuring the entry and sets -- this object to valid(1) or aborts, setting this -- object to invalid(4). If the agent determines that -- an entry has been in the underCreation(3) state for -- an abnormally long time, it may decide that the -- management station has crashed. If the agent makes -- this decision, it may set this object to invalid(4) -- to reclaim the entry. A prudent agent will -- understand that the management station may need to -- wait for human input and will allow for that -- possibility in its determination of this abnormally -- long period. -- -- An entry in the valid(1) state is fully configured and -- consistent and fully represents the configuration or -- operation such a row is intended to represent. For -- example, it could be a statistical function that is -- configured and active, or a filter that is available -- in the list of filters processed by the packet capture -- process. -- -- A manager is restricted to changing the state of an -- entry in the following ways: -- -- create under -- To: valid Request Creation invalid -- From: -- valid OK NO OK OK -- createRequest N/A N/A N/A N/A -- underCreation OK NO OK OK -- invalid NO NO NO OK -- nonExistent NO OK NO OK -- -- In the table above, it is not applicable to move the -- state from the createRequest state to any other -- state because the manager will never find the -- variable in that state. The nonExistent state is -- not a value of the enumeration, rather it means that -- the entryStatus variable does not exist at all. -- -- An agent may allow an entryStatus variable to change -- state in additional ways, so long as the semantics -- of the states are followed. This allowance is made -- to ease the implementation of the agent and is made -- despite the fact that managers should never -- excercise these additional state transitions. statistics OBJECT IDENTIFIER ::= { rmon 1 } history OBJECT IDENTIFIER ::= { rmon 2 } alarm OBJECT IDENTIFIER ::= { rmon 3 } hosts OBJECT IDENTIFIER ::= { rmon 4 } hostTopN OBJECT IDENTIFIER ::= { rmon 5 } matrix OBJECT IDENTIFIER ::= { rmon 6 } filter OBJECT IDENTIFIER ::= { rmon 7 } capture OBJECT IDENTIFIER ::= { rmon 8 } event OBJECT IDENTIFIER ::= { rmon 9 } -- The Ethernet Statistics Group -- -- Implementation of the Ethernet Statistics group is -- optional. -- -- The ethernet statistics group contains statistics -- measured by the probe for each monitored interface on -- this device. These statistics take the form of free -- running counters that start from zero when a valid entry -- is created. -- -- This group currently has statistics defined only for -- Ethernet interfaces. Each etherStatsEntry contains -- statistics for one Ethernet interface. The probe must -- create one etherStats entry for each monitored Ethernet -- interface on the device. etherStatsTable OBJECT-TYPE SYNTAX SEQUENCE OF EtherStatsEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of Ethernet statistics entries." ::= { statistics 1 } etherStatsEntry OBJECT-TYPE SYNTAX EtherStatsEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics kept for a particular Ethernet interface. As an example, an instance of the etherStatsPkts object might be named etherStatsPkts.1" INDEX { etherStatsIndex } ::= { etherStatsTable 1 } EtherStatsEntry ::= SEQUENCE { etherStatsIndex INTEGER (1..65535), etherStatsDataSource OBJECT IDENTIFIER, etherStatsDropEvents Counter, etherStatsOctets Counter, etherStatsPkts Counter, etherStatsBroadcastPkts Counter, etherStatsMulticastPkts Counter, etherStatsCRCAlignErrors Counter, etherStatsUndersizePkts Counter, etherStatsOversizePkts Counter, etherStatsFragments Counter, etherStatsJabbers Counter, etherStatsCollisions Counter, etherStatsPkts64Octets Counter, etherStatsPkts65to127Octets Counter, etherStatsPkts128to255Octets Counter, etherStatsPkts256to511Octets Counter, etherStatsPkts512to1023Octets Counter, etherStatsPkts1024to1518Octets Counter, etherStatsOwner OwnerString, etherStatsStatus EntryStatus } etherStatsIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The value of this object uniquely identifies this etherStats entry." ::= { etherStatsEntry 1 } etherStatsDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the source of the data that this etherStats entry is configured to analyze. This source can be any ethernet interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in RFC 1213 and RFC 1573 [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated etherStatsStatus object is equal to valid(1)." ::= { etherStatsEntry 2 } etherStatsDropEvents OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of events in which packets were dropped by the probe due to lack of resources. Note that this number is not necessarily the number of packets dropped; it is just the number of times this condition has been detected." ::= { etherStatsEntry 3 } etherStatsOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets). This object can be used as a reasonable estimate of ethernet utilization. If greater precision is desired, the etherStatsPkts and etherStatsOctets objects should be sampled before and after a common interval. The differences in the sampled values are Pkts and Octets, respectively, and the number of seconds in the interval is Interval. These values are used to calculate the Utilization as follows: Pkts * (9.6 + 6.4) + (Octets * .8) Utilization = ------------------------------------- Interval * 10,000 The result of this equation is the value Utilization which is the percent utilization of the ethernet segment on a scale of 0 to 100 percent." ::= { etherStatsEntry 4 } etherStatsPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets, broadcast packets, and multicast packets) received." ::= { etherStatsEntry 5 } etherStatsBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of good packets received that were directed to the broadcast address. Note that this does not include multicast packets." ::= { etherStatsEntry 6 } etherStatsMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of good packets received that were directed to a multicast address. Note that this number does not include packets directed to the broadcast address." ::= { etherStatsEntry 7 } etherStatsCRCAlignErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error)." ::= { etherStatsEntry 8 } etherStatsUndersizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed." ::= { etherStatsEntry 9 } etherStatsOversizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets) and were otherwise well formed." ::= { etherStatsEntry 10 } etherStatsFragments OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were less than 64 octets in length (excluding framing bits but including FCS octets) and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). Note that it is entirely normal for etherStatsFragments to increment. This is because it counts both runts (which are normal occurrences due to collisions) and noise hits." ::= { etherStatsEntry 11 } etherStatsJabbers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). Note that this definition of jabber is different than the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms." ::= { etherStatsEntry 12 } etherStatsCollisions OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The best estimate of the total number of collisions on this Ethernet segment. The value returned will depend on the location of the RMON probe. Section 8.2.1.3 (10BASE-5) and section 10.3.1.3 (10BASE-2) of IEEE standard 802.3 states that a station must detect a collision, in the receive mode, if three or more stations are transmitting simultaneously. A repeater port must detect a collision when two or more stations are transmitting simultaneously. Thus a probe placed on a repeater port could record more collisions than a probe connected to a station on the same segment would. Probe location plays a much smaller role when considering 10BASE-T. 14.2.1.4 (10BASE-T) of IEEE standard 802.3 defines a collision as the simultaneous presence of signals on the DO and RD circuits (transmitting and receiving at the same time). A 10BASE-T station can only detect collisions when it is transmitting. Thus probes placed on a station and a repeater, should report the same number of collisions. Note also that an RMON probe inside a repeater should ideally report collisions between the repeater and one or more other hosts (transmit collisions as defined by IEEE 802.3k) plus receiver collisions observed on any coax segments to which the repeater is connected." ::= { etherStatsEntry 13 } etherStatsPkts64Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets) received that were 64 octets in length (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 14 } etherStatsPkts65to127Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets) received that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 15 } etherStatsPkts128to255Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets) received that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 16 } etherStatsPkts256to511Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets) received that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 17 } etherStatsPkts512to1023Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 18 } etherStatsPkts1024to1518Octets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets (including bad packets) received that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets)." ::= { etherStatsEntry 19 } etherStatsOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { etherStatsEntry 20 } etherStatsStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this etherStats entry." ::= { etherStatsEntry 21 } -- The History Control Group -- Implementation of the History Control group is optional. -- -- The history control group controls the periodic statistical -- sampling of data from various types of networks. The -- historyControlTable stores configuration entries that each -- define an interface, polling period, and other parameters. -- Once samples are taken, their data is stored in an entry -- in a media-specific table. Each such entry defines one -- sample, and is associated with the historyControlEntry that -- caused the sample to be taken. Each counter in the -- etherHistoryEntry counts the same event as its -- similarly-named counterpart in the etherStatsEntry, -- except that each value here is a cumulative sum during a -- sampling period. -- -- If the probe keeps track of the time of day, it should -- start the first sample of the history at a time such that -- when the next hour of the day begins, a sample is -- started at that instant. This tends to make more -- user-friendly reports, and enables comparison of reports -- from different probes that have relatively accurate time -- of day. -- -- The probe is encouraged to add two history control entries -- per monitored interface upon initialization that describe -- a short term and a long term polling period. Suggested -- parameters are 30 seconds for the short term polling period -- and 30 minutes for the long term period. historyControlTable OBJECT-TYPE SYNTAX SEQUENCE OF HistoryControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of history control entries." ::= { history 1 } historyControlEntry OBJECT-TYPE SYNTAX HistoryControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of parameters that set up a periodic sampling of statistics. As an example, an instance of the historyControlInterval object might be named historyControlInterval.2" INDEX { historyControlIndex } ::= { historyControlTable 1 } HistoryControlEntry ::= SEQUENCE { historyControlIndex INTEGER (1..65535), historyControlDataSource OBJECT IDENTIFIER, historyControlBucketsRequested INTEGER (1..65535), historyControlBucketsGranted INTEGER (1..65535), historyControlInterval INTEGER (1..3600), historyControlOwner OwnerString, historyControlStatus EntryStatus } historyControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the historyControl table. Each such entry defines a set of samples at a particular interval for an interface on the device." ::= { historyControlEntry 1 } historyControlDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the source of the data for which historical data was collected and placed in a media-specific table on behalf of this historyControlEntry. This source can be any interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in RFC 1213 and RFC 1573 [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated historyControlStatus object is equal to valid(1)." ::= { historyControlEntry 2 } historyControlBucketsRequested OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The requested number of discrete time intervals over which data is to be saved in the part of the media-specific table associated with this historyControlEntry. When this object is created or modified, the probe should set historyControlBucketsGranted as closely to this object as is possible for the particular probe implementation and available resources." DEFVAL { 50 } ::= { historyControlEntry 3 } historyControlBucketsGranted OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The number of discrete sampling intervals over which data shall be saved in the part of the media-specific table associated with this historyControlEntry. When the associated historyControlBucketsRequested object is created or modified, the probe should set this object as closely to the requested value as is possible for the particular probe implementation and available resources. The probe must not lower this value except as a result of a modification to the associated historyControlBucketsRequested object. There will be times when the actual number of buckets associated with this entry is less than the value of this object. In this case, at the end of each sampling interval, a new bucket will be added to the media-specific table. When the number of buckets reaches the value of this object and a new bucket is to be added to the media-specific table, the oldest bucket associated with this historyControlEntry shall be deleted by the agent so that the new bucket can be added. When the value of this object changes to a value less than the current value, entries are deleted from the media-specific table associated with this historyControlEntry. Enough of the oldest of these entries shall be deleted by the agent so that their number remains less than or equal to the new value of this object. When the value of this object changes to a value greater than the current value, the number of associated media- specific entries may be allowed to grow." ::= { historyControlEntry 4 } historyControlInterval OBJECT-TYPE SYNTAX INTEGER (1..3600) ACCESS read-write STATUS mandatory DESCRIPTION "The interval in seconds over which the data is sampled for each bucket in the part of the media-specific table associated with this historyControlEntry. This interval can be set to any number of seconds between 1 and 3600 (1 hour). Because the counters in a bucket may overflow at their maximum value with no indication, a prudent manager will take into account the possibility of overflow in any of the associated counters. It is important to consider the minimum time in which any counter could overflow on a particular media type and set the historyControlInterval object to a value less than this interval. This is typically most important for the 'octets' counter in any media-specific table. For example, on an Ethernet network, the etherHistoryOctets counter could overflow in about one hour at the Ethernet's maximum utilization. This object may not be modified if the associated historyControlStatus object is equal to valid(1)." DEFVAL { 1800 } ::= { historyControlEntry 5 } historyControlOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { historyControlEntry 6 } historyControlStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this historyControl entry. Each instance of the media-specific table associated with this historyControlEntry will be deleted by the agent if this historyControlEntry is not equal to valid(1)." ::= { historyControlEntry 7 } -- The Ethernet History Group -- Implementation of the Ethernet History group is optional. -- -- The Ethernet History group records periodic -- statistical samples from a network and stores them -- for later retrieval. Once samples are taken, their -- data is stored in an entry in a media-specific -- table. Each such entry defines one sample, and is -- associated with the historyControlEntry that caused -- the sample to be taken. This group defines the -- etherHistoryTable, for Ethernet networks. -- etherHistoryTable OBJECT-TYPE SYNTAX SEQUENCE OF EtherHistoryEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of Ethernet history entries." ::= { history 2 } etherHistoryEntry OBJECT-TYPE SYNTAX EtherHistoryEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "An historical sample of Ethernet statistics on a particular Ethernet interface. This sample is associated with the historyControlEntry which set up the parameters for a regular collection of these samples. As an example, an instance of the etherHistoryPkts object might be named etherHistoryPkts.2.89" INDEX { etherHistoryIndex , etherHistorySampleIndex } ::= { etherHistoryTable 1 } EtherHistoryEntry ::= SEQUENCE { etherHistoryIndex INTEGER (1..65535), etherHistorySampleIndex INTEGER (1..2147483647), etherHistoryIntervalStart TimeTicks, etherHistoryDropEvents Counter, etherHistoryOctets Counter, etherHistoryPkts Counter, etherHistoryBroadcastPkts Counter, etherHistoryMulticastPkts Counter, etherHistoryCRCAlignErrors Counter, etherHistoryUndersizePkts Counter, etherHistoryOversizePkts Counter, etherHistoryFragments Counter, etherHistoryJabbers Counter, etherHistoryCollisions Counter, etherHistoryUtilization INTEGER (0..10000) } etherHistoryIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The history of which this entry is a part. The history identified by a particular value of this index is the same history as identified by the same value of historyControlIndex." ::= { etherHistoryEntry 1 } etherHistorySampleIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies the particular sample this entry represents among all samples associated with the same historyControlEntry. This index starts at 1 and increases by one as each new sample is taken." ::= { etherHistoryEntry 2 } etherHistoryIntervalStart OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime at the start of the interval over which this sample was measured. If the probe keeps track of the time of day, it should start the first sample of the history at a time such that when the next hour of the day begins, a sample is started at that instant. Note that following this rule may require the probe to delay collecting the first sample of the history, as each sample must be of the same interval. Also note that the sample which is currently being collected is not accessible in this table until the end of its interval." ::= { etherHistoryEntry 3 } etherHistoryDropEvents OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of events in which packets were dropped by the probe due to lack of resources during this sampling interval. Note that this number is not necessarily the number of packets dropped, it is just the number of times this condition has been detected." ::= { etherHistoryEntry 4 } etherHistoryOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets)." ::= { etherHistoryEntry 5 } etherHistoryPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets (including bad packets) received during this sampling interval." ::= { etherHistoryEntry 6 } etherHistoryBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets received during this sampling interval that were directed to the broadcast address." ::= { etherHistoryEntry 7 } etherHistoryMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets received during this sampling interval that were directed to a multicast address. Note that this number does not include packets addressed to the broadcast address." ::= { etherHistoryEntry 8 } etherHistoryCRCAlignErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this sampling interval that had a length (excluding framing bits but including FCS octets) between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error)." ::= { etherHistoryEntry 9 } etherHistoryUndersizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this sampling interval that were less than 64 octets long (excluding framing bits but including FCS octets) and were otherwise well formed." ::= { etherHistoryEntry 10 } etherHistoryOversizePkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets) but were otherwise well formed." ::= { etherHistoryEntry 11 } etherHistoryFragments OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The total number of packets received during this sampling interval that were less than 64 octets in length (excluding framing bits but including FCS octets) had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). Note that it is entirely normal for etherHistoryFragments to increment. This is because it counts both runts (which are normal occurrences due to collisions) and noise hits." ::= { etherHistoryEntry 12 } etherHistoryJabbers OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets received during this sampling interval that were longer than 1518 octets (excluding framing bits but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). Note that this definition of jabber is different than the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms." ::= { etherHistoryEntry 13 } etherHistoryCollisions OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The best estimate of the total number of collisions on this Ethernet segment during this sampling interval. The value returned will depend on the location of the RMON probe. Section 8.2.1.3 (10BASE-5) and section 10.3.1.3 (10BASE-2) of IEEE standard 802.3 states that a station must detect a collision, in the receive mode, if three or more stations are transmitting simultaneously. A repeater port must detect a collision when two or more stations are transmitting simultaneously. Thus a probe placed on a repeater port could record more collisions than a probe connected to a station on the same segment would. Probe location plays a much smaller role when considering 10BASE-T. 14.2.1.4 (10BASE-T) of IEEE standard 802.3 defines a collision as the simultaneous presence of signals on the DO and RD circuits (transmitting and receiving at the same time). A 10BASE-T station can only detect collisions when it is transmitting. Thus probes placed on a station and a repeater, should report the same number of collisions. Note also that an RMON probe inside a repeater should ideally report collisions between the repeater and one or more other hosts (transmit collisions as defined by IEEE 802.3k) plus receiver collisions observed on any coax segments to which the repeater is connected." ::= { etherHistoryEntry 14 } etherHistoryUtilization OBJECT-TYPE SYNTAX INTEGER (0..10000) ACCESS read-only STATUS mandatory DESCRIPTION "The best estimate of the mean physical layer network utilization on this interface during this sampling interval, in hundredths of a percent." ::= { etherHistoryEntry 15 } -- The Alarm Group -- Implementation of the Alarm group is optional. -- -- The Alarm Group requires the implementation of the Event -- group. -- -- The Alarm group periodically takes -- statistical samples from variables in the probe and -- compares them to thresholds that have been -- configured. The alarm table stores configuration -- entries that each define a variable, polling period, -- and threshold parameters. If a sample is found to -- cross the threshold values, an event is generated. -- Only variables that resolve to an ASN.1 primitive -- type of INTEGER (INTEGER, Counter, Gauge, or -- TimeTicks) may be monitored in this way. -- -- This function has a hysteresis mechanism to limit -- the generation of events. This mechanism generates -- one event as a threshold is crossed in the -- appropriate direction. No more events are generated -- for that threshold until the opposite threshold is -- crossed. -- -- In the case of a sampling a deltaValue, a probe may -- implement this mechanism with more precision if it -- takes a delta sample twice per period, each time -- comparing the sum of the latest two samples to the -- threshold. This allows the detection of threshold -- crossings that span the sampling boundary. Note -- that this does not require any special configuration -- of the threshold value. It is suggested that probes -- implement this more precise algorithm. alarmTable OBJECT-TYPE SYNTAX SEQUENCE OF AlarmEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of alarm entries." ::= { alarm 1 } alarmEntry OBJECT-TYPE SYNTAX AlarmEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of parameters that set up a periodic checking for alarm conditions. For example, an instance of the alarmValue object might be named alarmValue.8" INDEX { alarmIndex } ::= { alarmTable 1 } AlarmEntry ::= SEQUENCE { alarmIndex INTEGER (1..65535), alarmInterval INTEGER, alarmVariable OBJECT IDENTIFIER, alarmSampleType INTEGER, alarmValue INTEGER, alarmStartupAlarm INTEGER, alarmRisingThreshold INTEGER, alarmFallingThreshold INTEGER, alarmRisingEventIndex INTEGER (0..65535), alarmFallingEventIndex INTEGER (0..65535), alarmOwner OwnerString, alarmStatus EntryStatus } alarmIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the alarm table. Each such entry defines a diagnostic sample at a particular interval for an object on the device." ::= { alarmEntry 1 } alarmInterval OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. When setting this variable, care should be taken in the case of deltaValue sampling - the interval should be set short enough that the sampled variable is very unlikely to increase or decrease by more than 2^31 - 1 during a single sampling interval. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 2 } alarmVariable OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of INTEGER (INTEGER, Counter, Gauge, or TimeTicks) may be sampled. Because SNMP access control is articulated entirely in terms of the contents of MIB views, no access control mechanism exists that can restrict the value of this object to identify only those objects that exist in a particular MIB view. Because there is thus no acceptable means of restricting the read access that could be obtained through the alarm mechanism, the probe must only grant write access to this object in those views that have read access to all objects on the probe. During a set operation, if the supplied variable name is not available in the selected MIB view, a badValue error must be returned. If at any time the variable name of an established alarmEntry is no longer available in the selected MIB view, the probe must change the status of this alarmEntry to invalid(4). This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 3 } alarmSampleType OBJECT-TYPE SYNTAX INTEGER { absoluteValue(1), deltaValue(2) } ACCESS read-write STATUS mandatory DESCRIPTION "The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is absoluteValue(1), the value of the selected variable will be compared directly with the thresholds at the end of the sampling interval. If the value of this object is deltaValue(2), the value of the selected variable at the last sample will be subtracted from the current value, and the difference compared with the thresholds. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 4 } alarmValue OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The value of the statistic during the last sampling period. For example, if the sample type is deltaValue, this value will be the difference between the samples at the beginning and end of the period. If the sample type is absoluteValue, this value will be the sampled value at the end of the period. This is the value that is compared with the rising and falling thresholds. The value during the current sampling period is not made available until the period is completed and will remain available until the next period completes." ::= { alarmEntry 5 } alarmStartupAlarm OBJECT-TYPE SYNTAX INTEGER { risingAlarm(1), fallingAlarm(2), risingOrFallingAlarm(3) } ACCESS read-write STATUS mandatory DESCRIPTION "The alarm that may be sent when this entry is first set to valid. If the first sample after this entry becomes valid is greater than or equal to the risingThreshold and alarmStartupAlarm is equal to risingAlarm(1) or risingOrFallingAlarm(3), then a single rising alarm will be generated. If the first sample after this entry becomes valid is less than or equal to the fallingThreshold and alarmStartupAlarm is equal to fallingAlarm(2) or risingOrFallingAlarm(3), then a single falling alarm will be generated. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 6 } alarmRisingThreshold OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "A threshold for the sampled statistic. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is greater than or equal to this threshold and the associated alarmStartupAlarm is equal to risingAlarm(1) or risingOrFallingAlarm(3). After a rising event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches the alarmFallingThreshold. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 7 } alarmFallingThreshold OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "A threshold for the sampled statistic. When the current sampled value is less than or equal to this threshold, and the value at the last sampling interval was greater than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is less than or equal to this threshold and the associated alarmStartupAlarm is equal to fallingAlarm(2) or risingOrFallingAlarm(3). After a falling event is generated, another such event will not be generated until the sampled value rises above this threshold and reaches the alarmRisingThreshold. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 8 } alarmRisingEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The index of the eventEntry that is used when a rising threshold is crossed. The eventEntry identified by a particular value of this index is the same as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In particular, if this value is zero, no associated event will be generated, as zero is not a valid event index. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 9 } alarmFallingEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The index of the eventEntry that is used when a falling threshold is crossed. The eventEntry identified by a particular value of this index is the same as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In particular, if this value is zero, no associated event will be generated, as zero is not a valid event index. This object may not be modified if the associated alarmStatus object is equal to valid(1)." ::= { alarmEntry 10 } alarmOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { alarmEntry 11 } alarmStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this alarm entry." ::= { alarmEntry 12 } -- The Host Group -- Implementation of the Host group is optional. -- -- The host group discovers new hosts on the network by -- keeping a list of source and destination MAC Addresses seen -- in good packets. For each of these addresses, the host -- group keeps a set of statistics. The hostControlTable -- controls which interfaces this function is performed on, -- and contains some information about the process. On -- behalf of each hostControlEntry, data is collected on an -- interface and placed in both the hostTable and the -- hostTimeTable. If the monitoring device finds itself -- short of resources, it may delete entries as needed. It -- is suggested that the device delete the least recently -- used entries first. -- The hostTable contains entries for each address -- discovered on a particular interface. Each entry -- contains statistical data about that host. This table is -- indexed by the MAC address of the host, through which a -- random access may be achieved. -- The hostTimeTable contains data in the same format as the -- hostTable, and must contain the same set of hosts, but is -- indexed using hostTimeCreationOrder rather than -- hostAddress. -- The hostTimeCreationOrder is an integer which reflects -- the relative order in which a particular entry was -- discovered and thus inserted into the table. As this -- order, and thus the index, is among those entries -- currently in the table, the index for a particular entry -- may change if an (earlier) entry is deleted. Thus the -- association between hostTimeCreationOrder and -- hostTimeEntry may be broken at any time. -- The hostTimeTable has two important uses. The first is the -- fast download of this potentially large table. Because the -- index of this table runs from 1 to the size of the table, -- inclusive, its values are predictable. This allows very -- efficient packing of variables into SNMP PDU's and allows -- a table transfer to have multiple packets outstanding. -- These benefits increase transfer rates tremendously. -- The second use of the hostTimeTable is the efficient -- discovery by the management station of new entries added -- to the table. After the management station has downloaded -- the entire table, it knows that new entries will be added -- immediately after the end of the current table. It can -- thus detect new entries there and retrieve them easily. -- Because the association between hostTimeCreationOrder and -- hostTimeEntry may be broken at any time, the management -- station must monitor the related hostControlLastDeleteTime -- object. When the management station thus detects a -- deletion, it must assume that any such associations have --- been broken, and invalidate any it has stored locally. -- This includes restarting any download of the -- hostTimeTable that may have been in progress, as well as -- rediscovering the end of the hostTimeTable so that it may -- detect new entries. If the management station does not -- detect the broken association, it may continue to refer -- to a particular host by its creationOrder while -- unwittingly retrieving the data associated with another -- host entirely. If this happens while downloading the -- host table, the management station may fail to download -- all of the entries in the table. hostControlTable OBJECT-TYPE SYNTAX SEQUENCE OF HostControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of host table control entries." ::= { hosts 1 } hostControlEntry OBJECT-TYPE SYNTAX HostControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of parameters that set up the discovery of hosts on a particular interface and the collection of statistics about these hosts. For example, an instance of the hostControlTableSize object might be named hostControlTableSize.1" INDEX { hostControlIndex } ::= { hostControlTable 1 } HostControlEntry ::= SEQUENCE { hostControlIndex INTEGER (1..65535), hostControlDataSource OBJECT IDENTIFIER, hostControlTableSize INTEGER, hostControlLastDeleteTime TimeTicks, hostControlOwner OwnerString, hostControlStatus EntryStatus } hostControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the hostControl table. Each such entry defines a function that discovers hosts on a particular interface and places statistics about them in the hostTable and the hostTimeTable on behalf of this hostControlEntry." ::= { hostControlEntry 1 } hostControlDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the source of the data for this instance of the host function. This source can be any interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in RFC 1213 and RFC 1573 [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated hostControlStatus object is equal to valid(1)." ::= { hostControlEntry 2 } hostControlTableSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of hostEntries in the hostTable and the hostTimeTable associated with this hostControlEntry." ::= { hostControlEntry 3 } hostControlLastDeleteTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when the last entry was deleted from the portion of the hostTable associated with this hostControlEntry. If no deletions have occurred, this value shall be zero." ::= { hostControlEntry 4 } hostControlOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { hostControlEntry 5 } hostControlStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this hostControl entry. If this object is not equal to valid(1), all associated entries in the hostTable, hostTimeTable, and the hostTopNTable shall be deleted by the agent." ::= { hostControlEntry 6 } hostTable OBJECT-TYPE SYNTAX SEQUENCE OF HostEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of host entries." ::= { hosts 2 } hostEntry OBJECT-TYPE SYNTAX HostEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics for a particular host that has been discovered on an interface of this device. For example, an instance of the hostOutBroadcastPkts object might be named hostOutBroadcastPkts.1.6.8.0.32.27.3.176" INDEX { hostIndex, hostAddress } ::= { hostTable 1 } HostEntry ::= SEQUENCE { hostAddress OCTET STRING, hostCreationOrder INTEGER (1..65535), hostIndex INTEGER (1..65535), hostInPkts Counter, hostOutPkts Counter, hostInOctets Counter, hostOutOctets Counter, hostOutErrors Counter, hostOutBroadcastPkts Counter, hostOutMulticastPkts Counter } hostAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The physical address of this host." ::= { hostEntry 1 } hostCreationOrder OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that defines the relative ordering of the creation time of hosts captured for a particular hostControlEntry. This index shall be between 1 and N, where N is the value of the associated hostControlTableSize. The ordering of the indexes is based on the order of each entry's insertion into the table, in which entries added earlier have a lower index value than entries added later. It is important to note that the order for a particular entry may change as an (earlier) entry is deleted from the table. Because this order may change, management stations should make use of the hostControlLastDeleteTime variable in the hostControlEntry associated with the relevant portion of the hostTable. By observing this variable, the management station may detect the circumstances where a previous association between a value of hostCreationOrder and a hostEntry may no longer hold." ::= { hostEntry 2 } hostIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The set of collected host statistics of which this entry is a part. The set of hosts identified by a particular value of this index is associated with the hostControlEntry as identified by the same value of hostControlIndex." ::= { hostEntry 3 } hostInPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted to this address since it was added to the hostTable." ::= { hostEntry 4 } hostOutPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets, including bad packets, transmitted by this address since it was added to the hostTable." ::= { hostEntry 5 } hostInOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets transmitted to this address since it was added to the hostTable (excluding framing bits but including FCS octets), except for those octets in bad packets." ::= { hostEntry 6 } hostOutOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets transmitted by this address since it was added to the hostTable (excluding framing bits but including FCS octets), including those octets in bad packets." ::= { hostEntry 7 } hostOutErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of bad packets transmitted by this address since this host was added to the hostTable." ::= { hostEntry 8 } hostOutBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted by this address that were directed to the broadcast address since this host was added to the hostTable." ::= { hostEntry 9 } hostOutMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted by this address that were directed to a multicast address since this host was added to the hostTable. Note that this number does not include packets directed to the broadcast address." ::= { hostEntry 10 } -- host Time Table hostTimeTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTimeEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of time-ordered host table entries." ::= { hosts 3 } hostTimeEntry OBJECT-TYPE SYNTAX HostTimeEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics for a particular host that has been discovered on an interface of this device. This collection includes the relative ordering of the creation time of this object. For example, an instance of the hostTimeOutBroadcastPkts object might be named hostTimeOutBroadcastPkts.1.687" INDEX { hostTimeIndex, hostTimeCreationOrder } ::= { hostTimeTable 1 } HostTimeEntry ::= SEQUENCE { hostTimeAddress OCTET STRING, hostTimeCreationOrder INTEGER (1..65535), hostTimeIndex INTEGER (1..65535), hostTimeInPkts Counter, hostTimeOutPkts Counter, hostTimeInOctets Counter, hostTimeOutOctets Counter, hostTimeOutErrors Counter, hostTimeOutBroadcastPkts Counter, hostTimeOutMulticastPkts Counter } hostTimeAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The physical address of this host." ::= { hostTimeEntry 1 } hostTimeCreationOrder OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the hostTime table among those entries associated with the same hostControlEntry. This index shall be between 1 and N, where N is the value of the associated hostControlTableSize. The ordering of the indexes is based on the order of each entry's insertion into the table, in which entries added earlier have a lower index value than entries added later. Thus the management station has the ability to learn of new entries added to this table without downloading the entire table. It is important to note that the index for a particular entry may change as an (earlier) entry is deleted from the table. Because this order may change, management stations should make use of the hostControlLastDeleteTime variable in the hostControlEntry associated with the relevant portion of the hostTimeTable. By observing this variable, the management station may detect the circumstances where a download of the table may have missed entries, and where a previous association between a value of hostTimeCreationOrder and a hostTimeEntry may no longer hold." ::= { hostTimeEntry 2 } hostTimeIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The set of collected host statistics of which this entry is a part. The set of hosts identified by a particular value of this index is associated with the hostControlEntry as identified by the same value of hostControlIndex." ::= { hostTimeEntry 3 } hostTimeInPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted to this address since it was added to the hostTimeTable." ::= { hostTimeEntry 4 } hostTimeOutPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of god packets transmitted by this address since it was added to the hostTimeTable." ::= { hostTimeEntry 5 } hostTimeInOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets transmitted to this address since it was added to the hostTimeTable (excluding framing bits but including FCS octets), except for those octets in bad packets." ::= { hostTimeEntry 6 } hostTimeOutOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets transmitted by this address since it was added to the hostTimeTable (excluding framing bits but including FCS octets), including those octets in bad packets." ::= { hostTimeEntry 7 } hostTimeOutErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of bad packets transmitted by this address since this host was added to the hostTimeTable." ::= { hostTimeEntry 8 } hostTimeOutBroadcastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted by this address that were directed to the broadcast address since this host was added to the hostTimeTable." ::= { hostTimeEntry 9 } hostTimeOutMulticastPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of good packets transmitted by this address that were directed to a multicast address since this host was added to the hostTimeTable. Note that this number does not include packets directed to the broadcast address." ::= { hostTimeEntry 10 } -- The Host Top "N" Group -- Implementation of the Host Top N group is optional. -- -- The Host Top N group requires the implementation of the -- host group. -- -- The Host Top N group is used to prepare reports that -- describe the hosts that top a list ordered by one of -- their statistics. -- The available statistics are samples of one of their -- base statistics, over an interval specified by the -- management station. Thus, these statistics are rate -- based. The management station also selects how many such -- hosts are reported. -- The hostTopNControlTable is used to initiate the -- generation of such a report. The management station -- may select the parameters of such a report, such as -- which interface, which statistic, how many hosts, -- and the start and stop times of the sampling. When -- the report is prepared, entries are created in the -- hostTopNTable associated with the relevant -- hostTopNControlEntry. These entries are static for -- each report after it has been prepared. hostTopNControlTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTopNControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of top N host control entries." ::= { hostTopN 1 } hostTopNControlEntry OBJECT-TYPE SYNTAX HostTopNControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of parameters that control the creation of a report of the top N hosts according to several metrics. For example, an instance of the hostTopNDuration object might be named hostTopNDuration.3" INDEX { hostTopNControlIndex } ::= { hostTopNControlTable 1 } HostTopNControlEntry ::= SEQUENCE { hostTopNControlIndex INTEGER (1..65535), hostTopNHostIndex INTEGER (1..65535), hostTopNRateBase INTEGER, hostTopNTimeRemaining INTEGER, hostTopNDuration INTEGER, hostTopNRequestedSize INTEGER, hostTopNGrantedSize INTEGER, hostTopNStartTime TimeTicks, hostTopNOwner OwnerString, hostTopNStatus EntryStatus } hostTopNControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the hostTopNControl table. Each such entry defines one top N report prepared for one interface." ::= { hostTopNControlEntry 1 } hostTopNHostIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The host table for which a top N report will be prepared on behalf of this entry. The host table identified by a particular value of this index is associated with the same host table as identified by the same value of hostIndex. This object may not be modified if the associated hostTopNStatus object is equal to valid(1)." ::= { hostTopNControlEntry 2 } hostTopNRateBase OBJECT-TYPE SYNTAX INTEGER { hostTopNInPkts(1), hostTopNOutPkts(2), hostTopNInOctets(3), hostTopNOutOctets(4), hostTopNOutErrors(5), hostTopNOutBroadcastPkts(6), hostTopNOutMulticastPkts(7) } ACCESS read-write STATUS mandatory DESCRIPTION "The variable for each host that the hostTopNRate variable is based upon. This object may not be modified if the associated hostTopNStatus object is equal to valid(1)." ::= { hostTopNControlEntry 3 } hostTopNTimeRemaining OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The number of seconds left in the report currently being collected. When this object is modified by the management station, a new collection is started, possibly aborting a currently running report. The new value is used as the requested duration of this report, which is loaded into the associated hostTopNDuration object. When this object is set to a non-zero value, any associated hostTopNEntries shall be made inaccessible by the monitor. While the value of this object is non-zero, it decrements by one per second until it reaches zero. During this time, all associated hostTopNEntries shall remain inaccessible. At the time that this object decrements to zero, the report is made accessible in the hostTopNTable. Thus, the hostTopN table needs to be created only at the end of the collection interval." DEFVAL { 0 } ::= { hostTopNControlEntry 4 } hostTopNDuration OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of seconds that this report has collected during the last sampling interval, or if this report is currently being collected, the number of seconds that this report is being collected during this sampling interval. When the associated hostTopNTimeRemaining object is set, this object shall be set by the probe to the same value and shall not be modified until the next time the hostTopNTimeRemaining is set. This value shall be zero if no reports have been requested for this hostTopNControlEntry." DEFVAL { 0 } ::= { hostTopNControlEntry 5 } hostTopNRequestedSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The maximum number of hosts requested for the top N table. When this object is created or modified, the probe should set hostTopNGrantedSize as closely to this object as is possible for the particular probe implementation and available resources." DEFVAL { 10 } ::= { hostTopNControlEntry 6 } hostTopNGrantedSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The maximum number of hosts in the top N table. When the associated hostTopNRequestedSize object is created or modified, the probe should set this object as closely to the requested value as is possible for the particular implementation and available resources. The probe must not lower this value except as a result of a set to the associated hostTopNRequestedSize object. Hosts with the highest value of hostTopNRate shall be placed in this table in decreasing order of this rate until there is no more room or until there are no more hosts." ::= { hostTopNControlEntry 7 } hostTopNStartTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when this top N report was last started. In other words, this is the time that the associated hostTopNTimeRemaining object was modified to start the requested report." ::= { hostTopNControlEntry 8 } hostTopNOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { hostTopNControlEntry 9 } hostTopNStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this hostTopNControl entry. If this object is not equal to valid(1), all associated hostTopNEntries shall be deleted by the agent." ::= { hostTopNControlEntry 10 } hostTopNTable OBJECT-TYPE SYNTAX SEQUENCE OF HostTopNEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of top N host entries." ::= { hostTopN 2 } hostTopNEntry OBJECT-TYPE SYNTAX HostTopNEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of statistics for a host that is part of a top N report. For example, an instance of the hostTopNRate object might be named hostTopNRate.3.10" INDEX { hostTopNReport, hostTopNIndex } ::= { hostTopNTable 1 } HostTopNEntry ::= SEQUENCE { hostTopNReport INTEGER (1..65535), hostTopNIndex INTEGER (1..65535), hostTopNAddress OCTET STRING, hostTopNRate INTEGER } hostTopNReport OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "This object identifies the top N report of which this entry is a part. The set of hosts identified by a particular value of this object is part of the same report as identified by the same value of the hostTopNControlIndex object." ::= { hostTopNEntry 1 } hostTopNIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the hostTopN table among those in the same report. This index is between 1 and N, where N is the number of entries in this table. Increasing values of hostTopNIndex shall be assigned to entries with decreasing values of hostTopNRate until index N is assigned to the entry with the lowest value of hostTopNRate or there are no more hostTopNEntries." ::= { hostTopNEntry 2 } hostTopNAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The physical address of this host." ::= { hostTopNEntry 3 } hostTopNRate OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The amount of change in the selected variable during this sampling interval. The selected variable is this host's instance of the object selected by hostTopNRateBase." ::= { hostTopNEntry 4 } -- The Matrix Group -- Implementation of the Matrix group is optional. -- -- The Matrix group consists of the matrixControlTable, -- matrixSDTable and the matrixDSTable. These tables -- store statistics for a particular conversation -- between two addresses. As the device detects a new -- conversation, including those to a non-unicast -- address, it creates a new entry in both of the -- matrix tables. It must only create new entries -- based on information received in good packets. If -- the monitoring device finds itself short of -- resources, it may delete entries as needed. It is -- suggested that the device delete the least recently -- used entries first. matrixControlTable OBJECT-TYPE SYNTAX SEQUENCE OF MatrixControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of information entries for the traffic matrix on each interface." ::= { matrix 1 } matrixControlEntry OBJECT-TYPE SYNTAX MatrixControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "Information about a traffic matrix on a particular interface. For example, an instance of the matrixControlLastDeleteTime object might be named matrixControlLastDeleteTime.1" INDEX { matrixControlIndex } ::= { matrixControlTable 1 } MatrixControlEntry ::= SEQUENCE { matrixControlIndex INTEGER (1..65535), matrixControlDataSource OBJECT IDENTIFIER, matrixControlTableSize INTEGER, matrixControlLastDeleteTime TimeTicks, matrixControlOwner OwnerString, matrixControlStatus EntryStatus } matrixControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the matrixControl table. Each such entry defines a function that discovers conversations on a particular interface and places statistics about them in the matrixSDTable and the matrixDSTable on behalf of this matrixControlEntry." ::= { matrixControlEntry 1 } matrixControlDataSource OBJECT-TYPE SYNTAX OBJECT IDENTIFIER ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the source of the data from which this entry creates a traffic matrix. This source can be any interface on this device. In order to identify a particular interface, this object shall identify the instance of the ifIndex object, defined in RFC 1213 and RFC 1573 [4,6], for the desired interface. For example, if an entry were to receive data from interface #1, this object would be set to ifIndex.1. The statistics in this group reflect all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated matrixControlStatus object is equal to valid(1)." ::= { matrixControlEntry 2 } matrixControlTableSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of matrixSDEntries in the matrixSDTable for this interface. This must also be the value of the number of entries in the matrixDSTable for this interface." ::= { matrixControlEntry 3 } matrixControlLastDeleteTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when the last entry was deleted from the portion of the matrixSDTable or matrixDSTable associated with this matrixControlEntry. If no deletions have occurred, this value shall be zero." ::= { matrixControlEntry 4 } matrixControlOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { matrixControlEntry 5 } matrixControlStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this matrixControl entry. If this object is not equal to valid(1), all associated entries in the matrixSDTable and the matrixDSTable shall be deleted by the agent." ::= { matrixControlEntry 6 } matrixSDTable OBJECT-TYPE SYNTAX SEQUENCE OF MatrixSDEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of traffic matrix entries indexed by source and destination MAC address." ::= { matrix 2 } matrixSDEntry OBJECT-TYPE SYNTAX MatrixSDEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics for communications between two addresses on a particular interface. For example, an instance of the matrixSDPkts object might be named matrixSDPkts.1.6.8.0.32.27.3.176.6.8.0.32.10.8.113" INDEX { matrixSDIndex, matrixSDSourceAddress, matrixSDDestAddress } ::= { matrixSDTable 1 } MatrixSDEntry ::= SEQUENCE { matrixSDSourceAddress OCTET STRING, matrixSDDestAddress OCTET STRING, matrixSDIndex INTEGER (1..65535), matrixSDPkts Counter, matrixSDOctets Counter, matrixSDErrors Counter } matrixSDSourceAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The source physical address." ::= { matrixSDEntry 1 } matrixSDDestAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The destination physical address." ::= { matrixSDEntry 2 } matrixSDIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The set of collected matrix statistics of which this entry is a part. The set of matrix statistics identified by a particular value of this index is associated with the same matrixControlEntry as identified by the same value of matrixControlIndex." ::= { matrixSDEntry 3 } matrixSDPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets transmitted from the source address to the destination address (this number includes bad packets)." ::= { matrixSDEntry 4 } matrixSDOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets (excluding framing bits but including FCS octets) contained in all packets transmitted from the source address to the destination address." ::= { matrixSDEntry 5 } matrixSDErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of bad packets transmitted from the source address to the destination address." ::= { matrixSDEntry 6 } -- Traffic matrix tables from destination to source matrixDSTable OBJECT-TYPE SYNTAX SEQUENCE OF MatrixDSEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of traffic matrix entries indexed by destination and source MAC address." ::= { matrix 3 } matrixDSEntry OBJECT-TYPE SYNTAX MatrixDSEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A collection of statistics for communications between two addresses on a particular interface. For example, an instance of the matrixSDPkts object might be named matrixSDPkts.1.6.8.0.32.10.8.113.6.8.0.32.27.3.176" INDEX { matrixDSIndex, matrixDSDestAddress, matrixDSSourceAddress } ::= { matrixDSTable 1 } MatrixDSEntry ::= SEQUENCE { matrixDSSourceAddress OCTET STRING, matrixDSDestAddress OCTET STRING, matrixDSIndex INTEGER (1..65535), matrixDSPkts Counter, matrixDSOctets Counter, matrixDSErrors Counter } matrixDSSourceAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The source physical address." ::= { matrixDSEntry 1 } matrixDSDestAddress OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The destination physical address." ::= { matrixDSEntry 2 } matrixDSIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The set of collected matrix statistics of which this entry is a part. The set of matrix statistics identified by a particular value of this index is associated with the same matrixControlEntry as identified by the same value of matrixControlIndex." ::= { matrixDSEntry 3 } matrixDSPkts OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets transmitted from the source address to the destination address (this number includes bad packets)." ::= { matrixDSEntry 4 } matrixDSOctets OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of octets (excluding framing bits but including FCS octets) contained in all packets transmitted from the source address to the destination address." ::= { matrixDSEntry 5 } matrixDSErrors OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of bad packets transmitted from the source address to the destination address." ::= { matrixDSEntry 6 } -- The Filter Group -- Implementation of the Filter group is optional. -- -- The Filter group allows packets to be captured with an -- arbitrary filter expression. A logical data and -- event stream or "channel" is formed by the packets -- that match the filter expression. -- -- This filter mechanism allows the creation of an arbitrary -- logical expression with which to filter packets. Each -- filter associated with a channel is OR'ed with the others. -- Within a filter, any bits checked in the data and status -- are AND'ed with respect to other bits in the same filter. -- The NotMask also allows for checking for inequality. -- Finally, the channelAcceptType object allows for -- inversion of the whole equation. -- -- If a management station wishes to receive a trap to alert -- it that new packets have been captured and are available -- for download, it is recommended that it set up an alarm -- entry that monitors the value of the relevant -- channelMatches instance. -- -- The channel can be turned on or off, and can also -- generate events when packets pass through it. filterTable OBJECT-TYPE SYNTAX SEQUENCE OF FilterEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of packet filter entries." ::= { filter 1 } filterEntry OBJECT-TYPE SYNTAX FilterEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of parameters for a packet filter applied on a particular interface. As an example, an instance of the filterPktData object might be named filterPktData.12" INDEX { filterIndex } ::= { filterTable 1 } FilterEntry ::= SEQUENCE { filterIndex INTEGER (1..65535), filterChannelIndex INTEGER (1..65535), filterPktDataOffset INTEGER, filterPktData OCTET STRING, filterPktDataMask OCTET STRING, filterPktDataNotMask OCTET STRING, filterPktStatus INTEGER, filterPktStatusMask INTEGER, filterPktStatusNotMask INTEGER, filterOwner OwnerString, filterStatus EntryStatus } filterIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the filter table. Each such entry defines one filter that is to be applied to every packet received on an interface." ::= { filterEntry 1 } filterChannelIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-write STATUS mandatory DESCRIPTION "This object identifies the channel of which this filter is a part. The filters identified by a particular value of this object are associated with the same channel as identified by the same value of the channelIndex object." ::= { filterEntry 2 } filterPktDataOffset OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The offset from the beginning of each packet where a match of packet data will be attempted. This offset is measured from the point in the physical layer packet after the framing bits, if any. For example, in an Ethernet frame, this point is at the beginning of the destination MAC address. This object may not be modified if the associated filterStatus object is equal to valid(1)." DEFVAL { 0 } ::= { filterEntry 3 } filterPktData OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-write STATUS mandatory DESCRIPTION "The data that is to be matched with the input packet. For each packet received, this filter and the accompanying filterPktDataMask and filterPktDataNotMask will be adjusted for the offset. The only bits relevant to this match algorithm are those that have the corresponding filterPktDataMask bit equal to one. The following three rules are then applied to every packet: (1) If the packet is too short and does not have data corresponding to part of the filterPktData, the packet will fail this data match. (2) For each relevant bit from the packet with the corresponding filterPktDataNotMask bit set to zero, if the bit from the packet is not equal to the corresponding bit from the filterPktData, then the packet will fail this data match. (3) If for every relevant bit from the packet with the corresponding filterPktDataNotMask bit set to one, the bit from the packet is equal to the corresponding bit from the filterPktData, then the packet will fail this data match. Any packets that have not failed any of the three matches above have passed this data match. In particular, a zero length filter will match any packet. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 4 } filterPktDataMask OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-write STATUS mandatory DESCRIPTION "The mask that is applied to the match process. After adjusting this mask for the offset, only those bits in the received packet that correspond to bits set in this mask are relevant for further processing by the match algorithm. The offset is applied to filterPktDataMask in the same way it is applied to the filter. For the purposes of the matching algorithm, if the associated filterPktData object is longer than this mask, this mask is conceptually extended with '1' bits until it reaches the length of the filterPktData object. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 5 } filterPktDataNotMask OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-write STATUS mandatory DESCRIPTION "The inversion mask that is applied to the match process. After adjusting this mask for the offset, those relevant bits in the received packet that correspond to bits cleared in this mask must all be equal to their corresponding bits in the filterPktData object for the packet to be accepted. In addition, at least one of those relevant bits in the received packet that correspond to bits set in this mask must be different to its corresponding bit in the filterPktData object. For the purposes of the matching algorithm, if the associated filterPktData object is longer than this mask, this mask is conceptually extended with '0' bits until it reaches the length of the filterPktData object. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 6 } filterPktStatus OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The status that is to be matched with the input packet. The only bits relevant to this match algorithm are those that have the corresponding filterPktStatusMask bit equal to one. The following two rules are then applied to every packet: (1) For each relevant bit from the packet status with the corresponding filterPktStatusNotMask bit set to zero, if the bit from the packet status is not equal to the corresponding bit from the filterPktStatus, then the packet will fail this status match. (2) If for every relevant bit from the packet status with the corresponding filterPktStatusNotMask bit set to one, the bit from the packet status is equal to the corresponding bit from the filterPktStatus, then the packet will fail this status match. Any packets that have not failed either of the two matches above have passed this status match. In particular, a zero length status filter will match any packet's status. The value of the packet status is a sum. This sum initially takes the value zero. Then, for each error, E, that has been discovered in this packet, 2 raised to a value representing E is added to the sum. The errors and the bits that represent them are dependent on the media type of the interface that this channel is receiving packets from. The errors defined for a packet captured off of an Ethernet interface are as follows: bit # Error 0 Packet is longer than 1518 octets 1 Packet is shorter than 64 octets 2 Packet experienced a CRC or Alignment error For example, an Ethernet fragment would have a value of 6 (2^1 + 2^2). As this MIB is expanded to new media types, this object will have other media-specific errors defined. For the purposes of this status matching algorithm, if the packet status is longer than this filterPktStatus object, this object is conceptually extended with '0' bits until it reaches the size of the packet status. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 7 } filterPktStatusMask OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The mask that is applied to the status match process. Only those bits in the received packet that correspond to bits set in this mask are relevant for further processing by the status match algorithm. For the purposes of the matching algorithm, if the associated filterPktStatus object is longer than this mask, this mask is conceptually extended with '1' bits until it reaches the size of the filterPktStatus. In addition, if a packet status is longer than this mask, this mask is conceptually extended with '0' bits until it reaches the size of the packet status. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 8 } filterPktStatusNotMask OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The inversion mask that is applied to the status match process. Those relevant bits in the received packet status that correspond to bits cleared in this mask must all be equal to their corresponding bits in the filterPktStatus object for the packet to be accepted. In addition, at least one of those relevant bits in the received packet status that correspond to bits set in this mask must be different to its corresponding bit in the filterPktStatus object for the packet to be accepted. For the purposes of the matching algorithm, if the associated filterPktStatus object or a packet status is longer than this mask, this mask is conceptually extended with '0' bits until it reaches the longer of the lengths of the filterPktStatus object and the packet status. This object may not be modified if the associated filterStatus object is equal to valid(1)." ::= { filterEntry 9 } filterOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { filterEntry 10 } filterStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this filter entry." ::= { filterEntry 11 } channelTable OBJECT-TYPE SYNTAX SEQUENCE OF ChannelEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of packet channel entries." ::= { filter 2 } channelEntry OBJECT-TYPE SYNTAX ChannelEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of parameters for a packet channel applied on a particular interface. As an example, an instance of the channelMatches object might be named channelMatches.3" INDEX { channelIndex } ::= { channelTable 1 } ChannelEntry ::= SEQUENCE { channelIndex INTEGER (1..65535), channelIfIndex INTEGER (1..65535), channelAcceptType INTEGER, channelDataControl INTEGER, channelTurnOnEventIndex INTEGER (0..65535), channelTurnOffEventIndex INTEGER (0..65535), channelEventIndex INTEGER (0..65535), channelEventStatus INTEGER, channelMatches Counter, channelDescription DisplayString (SIZE (0..127)), channelOwner OwnerString, channelStatus EntryStatus } channelIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the channel table. Each such entry defines one channel, a logical data and event stream. It is suggested that before creating a channel, an application should scan all instances of the filterChannelIndex object to make sure that there are no pre-existing filters that would be inadvertently be linked to the channel." ::= { channelEntry 1 } channelIfIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The value of this object uniquely identifies the interface on this remote network monitoring device to which the associated filters are applied to allow data into this channel. The interface identified by a particular value of this object is the same interface as identified by the same value of the ifIndex object, defined in RFC 1213 and RFC 1573 [4,6]. The filters in this group are applied to all packets on the local network segment attached to the identified interface. An agent may or may not be able to tell if fundamental changes to the media of the interface have occurred and necessitate an invalidation of this entry. For example, a hot-pluggable ethernet card could be pulled out and replaced by a token-ring card. In such a case, if the agent has such knowledge of the change, it is recommended that it invalidate this entry. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 2 } channelAcceptType OBJECT-TYPE SYNTAX INTEGER { acceptMatched(1), acceptFailed(2) } ACCESS read-write STATUS mandatory DESCRIPTION "This object controls the action of the filters associated with this channel. If this object is equal to acceptMatched(1), packets will be accepted to this channel if they are accepted by both the packet data and packet status matches of an associated filter. If this object is equal to acceptFailed(2), packets will be accepted to this channel only if they fail either the packet data match or the packet status match of each of the associated filters. In particular, a channel with no associated filters will match no packets if set to acceptMatched(1) case and will match all packets in the acceptFailed(2) case. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 3 } channelDataControl OBJECT-TYPE SYNTAX INTEGER { on(1), off(2) } ACCESS read-write STATUS mandatory DESCRIPTION "This object controls the flow of data through this channel. If this object is on(1), data, status and events flow through this channel. If this object is off(2), data, status and events will not flow through this channel." DEFVAL { off } ::= { channelEntry 4 } channelTurnOnEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The value of this object identifies the event that is configured to turn the associated channelDataControl from off to on when the event is generated. The event identified by a particular value of this object is the same event as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In fact, if no event is intended for this channel, channelTurnOnEventIndex must be set to zero, a non-existent event index. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 5 } channelTurnOffEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The value of this object identifies the event that is configured to turn the associated channelDataControl from on to off when the event is generated. The event identified by a particular value of this object is the same event as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In fact, if no event is intended for this channel, channelTurnOffEventIndex must be set to zero, a non-existent event index. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 6 } channelEventIndex OBJECT-TYPE SYNTAX INTEGER (0..65535) ACCESS read-write STATUS mandatory DESCRIPTION "The value of this object identifies the event that is configured to be generated when the associated channelDataControl is on and a packet is matched. The event identified by a particular value of this object is the same event as identified by the same value of the eventIndex object. If there is no corresponding entry in the eventTable, then no association exists. In fact, if no event is intended for this channel, channelEventIndex must be set to zero, a non-existent event index. This object may not be modified if the associated channelStatus object is equal to valid(1)." ::= { channelEntry 7 } channelEventStatus OBJECT-TYPE SYNTAX INTEGER { eventReady(1), eventFired(2), eventAlwaysReady(3) } ACCESS read-write STATUS mandatory DESCRIPTION "The event status of this channel. If this channel is configured to generate events when packets are matched, a means of controlling the flow of those events is often needed. When this object is equal to eventReady(1), a single event may be generated, after which this object will be set by the probe to eventFired(2). While in the eventFired(2) state, no events will be generated until the object is modified to eventReady(1) (or eventAlwaysReady(3)). The management station can thus easily respond to a notification of an event by re-enabling this object. If the management station wishes to disable this flow control and allow events to be generated at will, this object may be set to eventAlwaysReady(3). Disabling the flow control is discouraged as it can result in high network traffic or other performance problems." DEFVAL { eventReady } ::= { channelEntry 8 } channelMatches OBJECT-TYPE SYNTAX Counter ACCESS read-only STATUS mandatory DESCRIPTION "The number of times this channel has matched a packet. Note that this object is updated even when channelDataControl is set to off." ::= { channelEntry 9 } channelDescription OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..127)) ACCESS read-write STATUS mandatory DESCRIPTION "A comment describing this channel." ::= { channelEntry 10 } channelOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { channelEntry 11 } channelStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this channel entry." ::= { channelEntry 12 } -- The Packet Capture Group -- Implementation of the Packet Capture group is optional. -- -- The Packet Capture Group requires implementation of the -- Filter Group. -- -- The Packet Capture group allows packets to be captured -- upon a filter match. The bufferControlTable controls -- the captured packets output from a channel that is -- associated with it. The captured packets are placed -- in entries in the captureBufferTable. These entries are -- associated with the bufferControlEntry on whose behalf they -- were stored. bufferControlTable OBJECT-TYPE SYNTAX SEQUENCE OF BufferControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of buffers control entries." ::= { capture 1 } bufferControlEntry OBJECT-TYPE SYNTAX BufferControlEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of parameters that control the collection of a stream of packets that have matched filters. As an example, an instance of the bufferControlCaptureSliceSize object might be named bufferControlCaptureSliceSize.3" INDEX { bufferControlIndex } ::= { bufferControlTable 1 } BufferControlEntry ::= SEQUENCE { bufferControlIndex INTEGER (1..65535), bufferControlChannelIndex INTEGER (1..65535), bufferControlFullStatus INTEGER, bufferControlFullAction INTEGER, bufferControlCaptureSliceSize INTEGER, bufferControlDownloadSliceSize INTEGER, bufferControlDownloadOffset INTEGER, bufferControlMaxOctetsRequested INTEGER, bufferControlMaxOctetsGranted INTEGER, bufferControlCapturedPackets INTEGER, bufferControlTurnOnTime TimeTicks, bufferControlOwner OwnerString, bufferControlStatus EntryStatus } bufferControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the bufferControl table. The value of this index shall never be zero. Each such entry defines one set of packets that is captured and controlled by one or more filters." ::= { bufferControlEntry 1 } bufferControlChannelIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-write STATUS mandatory DESCRIPTION "An index that identifies the channel that is the source of packets for this bufferControl table. The channel identified by a particular value of this index is the same as identified by the same value of the channelIndex object. This object may not be modified if the associated bufferControlStatus object is equal to valid(1)." ::= { bufferControlEntry 2 } bufferControlFullStatus OBJECT-TYPE SYNTAX INTEGER { spaceAvailable(1), full(2) } ACCESS read-only STATUS mandatory DESCRIPTION "This object shows whether the buffer has room to accept new packets or if it is full. If the status is spaceAvailable(1), the buffer is accepting new packets normally. If the status is full(2) and the associated bufferControlFullAction object is wrapWhenFull, the buffer is accepting new packets by deleting enough of the oldest packets to make room for new ones as they arrive. Otherwise, if the status is full(2) and the bufferControlFullAction object is lockWhenFull, then the buffer has stopped collecting packets. When this object is set to full(2) the probe must not later set it to spaceAvailable(1) except in the case of a significant gain in resources such as an increase of bufferControlOctetsGranted. In particular, the wrap-mode action of deleting old packets to make room for newly arrived packets must not affect the value of this object." ::= { bufferControlEntry 3 } bufferControlFullAction OBJECT-TYPE SYNTAX INTEGER { lockWhenFull(1), wrapWhenFull(2) -- FIFO } ACCESS read-write STATUS mandatory DESCRIPTION "Controls the action of the buffer when it reaches the full status. When in the lockWhenFull(1) state and a packet is added to the buffer that fills the buffer, the bufferControlFullStatus will be set to full(2) and this buffer will stop capturing packets." ::= { bufferControlEntry 4 } bufferControlCaptureSliceSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The maximum number of octets of each packet that will be saved in this capture buffer. For example, if a 1500 octet packet is received by the probe and this object is set to 500, then only 500 octets of the packet will be stored in the associated capture buffer. If this variable is set to 0, the capture buffer will save as many octets as is possible. This object may not be modified if the associated bufferControlStatus object is equal to valid(1)." DEFVAL { 100 } ::= { bufferControlEntry 5 } bufferControlDownloadSliceSize OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The maximum number of octets of each packet in this capture buffer that will be returned in an SNMP retrieval of that packet. For example, if 500 octets of a packet have been stored in the associated capture buffer, the associated bufferControlDownloadOffset is 0, and this object is set to 100, then the captureBufferPacket object that contains the packet will contain only the first 100 octets of the packet. A prudent manager will take into account possible interoperability or fragmentation problems that may occur if the download slice size is set too large. In particular, conformant SNMP implementations are not required to accept messages whose length exceeds 484 octets, although they are encouraged to support larger datagrams whenever feasible." DEFVAL { 100 } ::= { bufferControlEntry 6 } bufferControlDownloadOffset OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The offset of the first octet of each packet in this capture buffer that will be returned in an SNMP retrieval of that packet. For example, if 500 octets of a packet have been stored in the associated capture buffer and this object is set to 100, then the captureBufferPacket object that contains the packet will contain bytes starting 100 octets into the packet." DEFVAL { 0 } ::= { bufferControlEntry 7 } bufferControlMaxOctetsRequested OBJECT-TYPE SYNTAX INTEGER ACCESS read-write STATUS mandatory DESCRIPTION "The requested maximum number of octets to be saved in this captureBuffer, including any implementation-specific overhead. If this variable is set to -1, the capture buffer will save as many octets as is possible. When this object is created or modified, the probe should set bufferControlMaxOctetsGranted as closely to this object as is possible for the particular probe implementation and available resources. However, if the object has the special value of -1, the probe must set bufferControlMaxOctetsGranted to -1." DEFVAL { -1 } ::= { bufferControlEntry 8 } bufferControlMaxOctetsGranted OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The maximum number of octets that can be saved in this captureBuffer, including overhead. If this variable is -1, the capture buffer will save as many octets as possible. When the bufferControlMaxOctetsRequested object is created or modified, the probe should set this object as closely to the requested value as is possible for the particular probe implementation and available resources. However, if the request object has the special value of -1, the probe must set this object to -1. The probe must not lower this value except as a result of a modification to the associated bufferControlMaxOctetsRequested object. When this maximum number of octets is reached and a new packet is to be added to this capture buffer and the corresponding bufferControlFullAction is set to wrapWhenFull(2), enough of the oldest packets associated with this capture buffer shall be deleted by the agent so that the new packet can be added. If the corresponding bufferControlFullAction is set to lockWhenFull(1), the new packet shall be discarded. In either case, the probe must set bufferControlFullStatus to full(2). When the value of this object changes to a value less than the current value, entries are deleted from the captureBufferTable associated with this bufferControlEntry. Enough of the oldest of these captureBufferEntries shall be deleted by the agent so that the number of octets used remains less than or equal to the new value of this object. When the value of this object changes to a value greater than the current value, the number of associated captureBufferEntries may be allowed to grow." ::= { bufferControlEntry 9 } bufferControlCapturedPackets OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of packets currently in this captureBuffer." ::= { bufferControlEntry 10 } bufferControlTurnOnTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when this capture buffer was first turned on." ::= { bufferControlEntry 11 } bufferControlOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it." ::= { bufferControlEntry 12 } bufferControlStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this buffer Control Entry." ::= { bufferControlEntry 13 } captureBufferTable OBJECT-TYPE SYNTAX SEQUENCE OF CaptureBufferEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of packets captured off of a channel." ::= { capture 2 } captureBufferEntry OBJECT-TYPE SYNTAX CaptureBufferEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A packet captured off of an attached network. As an example, an instance of the captureBufferPacketData object might be named captureBufferPacketData.3.1783" INDEX { captureBufferControlIndex, captureBufferIndex } ::= { captureBufferTable 1 } CaptureBufferEntry ::= SEQUENCE { captureBufferControlIndex INTEGER (1..65535), captureBufferIndex INTEGER (1..2147483647), captureBufferPacketID INTEGER, captureBufferPacketData OCTET STRING, captureBufferPacketLength INTEGER, captureBufferPacketTime INTEGER, captureBufferPacketStatus INTEGER } captureBufferControlIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The index of the bufferControlEntry with which this packet is associated." ::= { captureBufferEntry 1 } captureBufferIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the captureBuffer table associated with a particular bufferControlEntry. This index will start at 1 and increase by one for each new packet added with the same captureBufferControlIndex. Should this value reach 2147483647, the next packet added with the same captureBufferControlIndex shall cause this value to wrap around to 1." ::= { captureBufferEntry 2 } captureBufferPacketID OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "An index that describes the order of packets that are received on a particular interface. The packetID of a packet captured on an interface is defined to be greater than the packetID's of all packets captured previously on the same interface. As the captureBufferPacketID object has a maximum positive value of 2^31 - 1, any captureBufferPacketID object shall have the value of the associated packet's packetID mod 2^31." ::= { captureBufferEntry 3 } captureBufferPacketData OBJECT-TYPE SYNTAX OCTET STRING ACCESS read-only STATUS mandatory DESCRIPTION "The data inside the packet, starting at the beginning of the packet plus any offset specified in the associated bufferControlDownloadOffset, including any link level headers. The length of the data in this object is the minimum of the length of the captured packet minus the offset, the length of the associated bufferControlCaptureSliceSize minus the offset, and the associated bufferControlDownloadSliceSize. If this minimum is less than zero, this object shall have a length of zero." ::= { captureBufferEntry 4 } captureBufferPacketLength OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The actual length (off the wire) of the packet stored in this entry, including FCS octets." ::= { captureBufferEntry 5 } captureBufferPacketTime OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "The number of milliseconds that had passed since this capture buffer was first turned on when this packet was captured." ::= { captureBufferEntry 6 } captureBufferPacketStatus OBJECT-TYPE SYNTAX INTEGER ACCESS read-only STATUS mandatory DESCRIPTION "A value which indicates the error status of this packet. The value of this object is defined in the same way as filterPktStatus. The value is a sum. This sum initially takes the value zero. Then, for each error, E, that has been discovered in this packet, 2 raised to a value representing E is added to the sum. The errors defined for a packet captured off of an Ethernet interface are as follows: bit # Error 0 Packet is longer than 1518 octets 1 Packet is shorter than 64 octets 2 Packet experienced a CRC or Alignment error 3 First packet in this capture buffer after it was detected that some packets were not processed correctly. 4 Packet's order in buffer is only approximate (May only be set for packets sent from the probe) For example, an Ethernet fragment would have a value of 6 (2^1 + 2^2). As this MIB is expanded to new media types, this object will have other media-specific errors defined." ::= { captureBufferEntry 7 } -- The Event Group -- Implementation of the Event group is optional. -- -- The Event group controls the generation and notification -- of events from this device. Each entry in the eventTable -- describes the parameters of the event that can be -- triggered. Each event entry is fired by an associated -- condition located elsewhere in the MIB. An event entry -- may also be associated- with a function elsewhere in the -- MIB that will be executed when the event is generated. For -- example, a channel may be turned on or off by the firing -- of an event. -- -- Each eventEntry may optionally specify that a log entry -- be created on its behalf whenever the event occurs. -- Each entry may also specify that notification should -- occur by way of SNMP trap messages. In this case, the -- community for the trap message is given in the associated -- eventCommunity object. The enterprise and specific trap -- fields of the trap are determined by the condition that -- triggered the event. Two traps are defined: risingAlarm -- and fallingAlarm. If the eventTable is triggered by a -- condition specified elsewhere, the enterprise and -- specific trap fields must be specified for traps -- generated for that condition. eventTable OBJECT-TYPE SYNTAX SEQUENCE OF EventEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of events to be generated." ::= { event 1 } eventEntry OBJECT-TYPE SYNTAX EventEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of parameters that describe an event to be generated when certain conditions are met. As an example, an instance of the eventLastTimeSent object might be named eventLastTimeSent.6" INDEX { eventIndex } ::= { eventTable 1 } EventEntry ::= SEQUENCE { eventIndex INTEGER (1..65535), eventDescription DisplayString (SIZE (0..127)), eventType INTEGER, eventCommunity OCTET STRING (SIZE (0..127)), eventLastTimeSent TimeTicks, eventOwner OwnerString, eventStatus EntryStatus } eventIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the event table. Each such entry defines one event that is to be generated when the appropriate conditions occur." ::= { eventEntry 1 } eventDescription OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..127)) ACCESS read-write STATUS mandatory DESCRIPTION "A comment describing this event entry." ::= { eventEntry 2 } eventType OBJECT-TYPE SYNTAX INTEGER { none(1), log(2), snmp-trap(3), -- send an SNMP trap log-and-trap(4) } ACCESS read-write STATUS mandatory DESCRIPTION "The type of notification that the probe will make about this event. In the case of log, an entry is made in the log table for each event. In the case of snmp-trap, an SNMP trap is sent to one or more management stations." ::= { eventEntry 3 } eventCommunity OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..127)) ACCESS read-write STATUS mandatory DESCRIPTION "If an SNMP trap is to be sent, it will be sent to the SNMP community specified by this octet string. In the future this table will be extended to include the party security mechanism. This object shall be set to a string of length zero if it is intended that that mechanism be used to specify the destination of the trap." ::= { eventEntry 4 } eventLastTimeSent OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime at the time this event entry last generated an event. If this entry has not generated any events, this value will be zero." ::= { eventEntry 5 } eventOwner OBJECT-TYPE SYNTAX OwnerString ACCESS read-write STATUS mandatory DESCRIPTION "The entity that configured this entry and is therefore using the resources assigned to it. If this object contains a string starting with 'monitor' and has associated entries in the log table, all connected management stations should retrieve those log entries, as they may have significance to all management stations connected to this device" ::= { eventEntry 6 } eventStatus OBJECT-TYPE SYNTAX EntryStatus ACCESS read-write STATUS mandatory DESCRIPTION "The status of this event entry. If this object is not equal to valid(1), all associated log entries shall be deleted by the agent." ::= { eventEntry 7 } -- logTable OBJECT-TYPE SYNTAX SEQUENCE OF LogEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A list of events that have been logged." ::= { event 2 } logEntry OBJECT-TYPE SYNTAX LogEntry ACCESS not-accessible STATUS mandatory DESCRIPTION "A set of data describing an event that has been logged. For example, an instance of the logDescription object might be named logDescription.6.47" INDEX { logEventIndex, logIndex } ::= { logTable 1 } LogEntry ::= SEQUENCE { logEventIndex INTEGER (1..65535), logIndex INTEGER (1..2147483647), logTime TimeTicks, logDescription DisplayString (SIZE (0..255)) } logEventIndex OBJECT-TYPE SYNTAX INTEGER (1..65535) ACCESS read-only STATUS mandatory DESCRIPTION "The event entry that generated this log entry. The log identified by a particular value of this index is associated with the same eventEntry as identified by the same value of eventIndex." ::= { logEntry 1 } logIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) ACCESS read-only STATUS mandatory DESCRIPTION "An index that uniquely identifies an entry in the log table amongst those generated by the same eventEntries. These indexes are assigned beginning with 1 and increase by one with each new log entry. The association between values of logIndex and logEntries is fixed for the lifetime of each logEntry. The agent may choose to delete the oldest instances of logEntry as required because of lack of memory. It is an implementation-specific matter as to when this deletion may occur." ::= { logEntry 2 } logTime OBJECT-TYPE SYNTAX TimeTicks ACCESS read-only STATUS mandatory DESCRIPTION "The value of sysUpTime when this log entry was created." ::= { logEntry 3 } logDescription OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..255)) ACCESS read-only STATUS mandatory DESCRIPTION "An implementation dependent description of the event that activated this log entry." ::= { logEntry 4 } -- These definitions use the TRAP-TYPE macro as -- defined in RFC 1215 [10] -- Remote Network Monitoring Traps -- risingAlarm TRAP-TYPE -- ENTERPRISE rmon -- VARIABLES { alarmIndex, alarmVariable, alarmSampleType, -- alarmValue, alarmRisingThreshold } -- DESCRIPTION -- "The SNMP trap that is generated when an alarm -- entry crosses its rising threshold and generates -- an event that is configured for sending SNMP -- traps." -- ::= 1 -- -- fallingAlarm TRAP-TYPE -- ENTERPRISE rmon -- VARIABLES { alarmIndex, alarmVariable, alarmSampleType, -- alarmValue, alarmFallingThreshold } -- DESCRIPTION -- "The SNMP trap that is generated when an alarm -- entry crosses its falling threshold and generates -- an event that is configured for sending SNMP -- traps." -- ::= 2 END -- ***************************************************************** -- CISCO-SMI.my: Cisco Enterprise Structure of Management Information -- -- April 1994, Jeffrey T. Johnson -- -- Copyright (c) 1994-1997 by cisco Systems, Inc. -- All rights reserved. -- -- ***************************************************************** -- CISCO-SMI DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-IDENTITY, enterprises FROM SNMPv2-SMI; cisco MODULE-IDENTITY LAST-UPDATED "9704090000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 West Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-snmp@cisco.com" DESCRIPTION "The Structure of Management Information for the Cisco enterprise." REVISION "9704090000Z" DESCRIPTION "Added ciscoPartnerProducts to generate sysObjectID for partner platforms" REVISION "9505160000Z" DESCRIPTION "New oid assignments for Cisco REPEATER MIB and others." REVISION "9404262000Z" DESCRIPTION "Initial version of this MIB module." ::= { enterprises 9 } -- assigned by IANA ciscoProducts OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoProducts is the root OBJECT IDENTIFIER from which sysObjectID values are assigned. Actual values are defined in CISCO-PRODUCTS-MIB." ::= { cisco 1 } local OBJECT-IDENTITY STATUS current DESCRIPTION "Subtree beneath which pre-10.2 MIBS were built." ::= { cisco 2 } temporary OBJECT-IDENTITY STATUS current DESCRIPTION "Subtree beneath which pre-10.2 experiments were placed." ::= { cisco 3 } pakmon OBJECT-IDENTITY STATUS current DESCRIPTION "reserved for pakmon" ::= { cisco 4 } workgroup OBJECT-IDENTITY STATUS current DESCRIPTION "subtree reserved for use by the Workgroup Business Unit" ::= { cisco 5 } otherEnterprises OBJECT-IDENTITY STATUS current DESCRIPTION "otherEnterprises provides a root object identifier from which mibs produced by other companies may be placed. mibs produced by other enterprises are typicially implemented with the object identifiers as defined in the mib, but if the mib is deemed to be uncontrolled, we may reroot the mib at this subtree in order to have a controlled version." ::= { cisco 6 } ciscoAgentCapability OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoAgentCapability provides a root object identifier from which AGENT-CAPABILITIES values may be assigned." ::= { cisco 7 } ciscoConfig OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoConfig is the main subtree for configuration mibs." ::= { cisco 8 } ciscoMgmt OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoMgmt is the main subtree for new mib development." ::= { cisco 9 } ciscoExperiment OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoExperiment provides a root object identifier from which experimental mibs may be temporarily based. mibs are typicially based here if they fall in one of two categories 1) are IETF work-in-process mibs which have not been assigned a permanent object identifier by the IANA. 2) are cisco work-in-process which has not been assigned a permanent object identifier by the cisco assigned number authority, typicially because the mib is not ready for deployment. NOTE WELL: support for mibs in the ciscoExperiment subtree will be deleted when a permanent object identifier assignment is made." ::= { cisco 10 } ciscoAdmin OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoAdmin is reserved for administratively assigned OBJECT IDENTIFIERS, i.e. those not associated with MIB objects" ::= { cisco 11 } ciscoModules OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoModules provides a root object identifier from which MODULE-IDENTITY values may be assigned." ::= { cisco 12 } lightstream OBJECT-IDENTITY STATUS current DESCRIPTION "subtree reserved for use by Lightstream" ::= { cisco 13 } ciscoworks OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoworks provides a root object identifier beneath which mibs applicable to the CiscoWorks family of network management products are defined." ::= { cisco 14 } newport OBJECT-IDENTITY STATUS current DESCRIPTION "subtree reserved for use by the former Newport Systems Solutions, now a portion of the Access Business Unit." ::= { cisco 15 } ciscoPartnerProducts OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoPartnerProducts is the root OBJECT IDENTIFIER from which partner sysObjectID values may be assigned. Such sysObjectID values are composed of the ciscoPartnerProducts prefix, followed by a single identifier that is unique for each partner, followed by the value of sysObjectID of the Cisco product from which partner product is derived. Note that the chassisPartner MIB object defines the value of the identifier assigned to each partner." ::= { cisco 16 } -- ciscoAdmin assignments follow ciscoProxy OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoProxy OBJECT IDENTIFIERS are used to uniquely name party mib records created to proxy for SNMPv1." ::= { ciscoAdmin 1 } ciscoPartyProxy OBJECT IDENTIFIER ::= { ciscoProxy 1 } ciscoContextProxy OBJECT IDENTIFIER ::= { ciscoProxy 2 } -- -- Administrative assignments for repeaters -- ciscoRptrGroupObjectID OBJECT-IDENTITY STATUS current DESCRIPTION "ciscoRptrGroupObjectID OBJECT IDENTIFIERS are used to uniquely identify groups of repeater ports for use by the SNMP-REPEATER-MIB (RFC 1516) rptrGroupObjectID object." ::= { ciscoAdmin 2 } ciscoUnknownRptrGroup OBJECT-IDENTITY STATUS current DESCRIPTION "The identity of an unknown repeater port group." ::= { ciscoRptrGroupObjectID 1 } cisco2505RptrGroup OBJECT-IDENTITY STATUS current DESCRIPTION "The authoritative identity of the Cisco 2505 repeater port group." ::= { ciscoRptrGroupObjectID 2 } cisco2507RptrGroup OBJECT-IDENTITY STATUS current DESCRIPTION "The authoritative identity of the Cisco 2507 repeater port group." ::= { ciscoRptrGroupObjectID 3 } cisco2516RptrGroup OBJECT-IDENTITY STATUS current DESCRIPTION "The authoritative identity of the Cisco 2516 repeater port group." ::= { ciscoRptrGroupObjectID 4 } ciscoWsx5020RptrGroup OBJECT-IDENTITY STATUS current DESCRIPTION "The authoritative identity of the wsx5020 repeater port group." ::= { ciscoRptrGroupObjectID 5 } -- -- Administrative assignments for chip sets -- ciscoChipSets OBJECT-IDENTITY STATUS current DESCRIPTION "Numerous media-specific MIBS have an object, defined as an OBJECT IDENTIFIER, which is the identity of the chipset realizing the interface. Cisco-specific chipsets have their OBJECT IDENTIFIERS assigned under this subtree." ::= { ciscoAdmin 3 } ciscoChipSetSaint1 OBJECT-IDENTITY STATUS current DESCRIPTION "The identity of the Rev 1 SAINT ethernet chipset manufactured for cisco by LSI Logic." ::= { ciscoChipSets 1 } ciscoChipSetSaint2 OBJECT-IDENTITY STATUS current DESCRIPTION "The identity of the Rev 2 SAINT ethernet chipset manufactured for cisco by LSI Logic." ::= { ciscoChipSets 2 } ciscoChipSetSaint3 OBJECT-IDENTITY STATUS current DESCRIPTION "The identity of the Rev 3 SAINT ethernet chipset manufactured for cisco by Plessey." ::= { ciscoChipSets 3 } ciscoChipSetSaint4 OBJECT-IDENTITY STATUS current DESCRIPTION "The identity of the Rev 4 SAINT ethernet chipset manufactured for cisco by Mitsubishi." ::= { ciscoChipSets 4 } END -- ***************************************************************** -- CISCO-PRODUCTS-MIB.my: Cisco Product Object Identifier Assignments -- -- -- January 1995, Jeffrey T. Johnson -- -- Copyright (c) 1995-1997 by cisco Systems, Inc. -- All rights reserved. -- -- ***************************************************************** CISCO-PRODUCTS-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY FROM SNMPv2-SMI ciscoModules, ciscoProducts FROM CISCO-SMI; ciscoProductsMIB MODULE-IDENTITY LAST-UPDATED "9505310000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-snmp@cisco.com" DESCRIPTION "This module defines the object identifiers that are assigned to various hardware platforms, and hence are returned as values for sysObjectID" REVISION "9505310000Z" DESCRIPTION "Miscellaneous updates." ::= { ciscoModules 2 } -- older cisco routers (i.e. CGS, MGS, AGS) do not have the ability -- to determine what kind of router they are. these devices return -- a sysObjectID value that indicates their configured functionality ciscoGatewayServer OBJECT IDENTIFIER ::= { ciscoProducts 1 } ciscoTerminalServer OBJECT IDENTIFIER ::= { ciscoProducts 2 } ciscoTrouter OBJECT IDENTIFIER ::= { ciscoProducts 3 } ciscoProtocolTranslator OBJECT IDENTIFIER ::= { ciscoProducts 4 } -- newer devices return a sysObjectID value that corresponds to the -- device model number ciscoIGS OBJECT IDENTIFIER ::= { ciscoProducts 5 } cisco3000 OBJECT IDENTIFIER ::= { ciscoProducts 6 } cisco4000 OBJECT IDENTIFIER ::= { ciscoProducts 7 } cisco7000 OBJECT IDENTIFIER ::= { ciscoProducts 8 } ciscoCS500 OBJECT IDENTIFIER ::= { ciscoProducts 9 } cisco2000 OBJECT IDENTIFIER ::= { ciscoProducts 10 } -- note well that an AGS+ must contain a cBus controller in order to -- know that it is an AGS+, otherwise it is unable to determine what -- kind of device it is, and returns one of the functionality-based -- sysObjectID values from above ciscoAGSplus OBJECT IDENTIFIER ::= { ciscoProducts 11 } cisco7010 OBJECT IDENTIFIER ::= { ciscoProducts 12 } cisco2500 OBJECT IDENTIFIER ::= { ciscoProducts 13 } cisco4500 OBJECT IDENTIFIER ::= { ciscoProducts 14 } cisco2102 OBJECT IDENTIFIER ::= { ciscoProducts 15 } cisco2202 OBJECT IDENTIFIER ::= { ciscoProducts 16 } cisco2501 OBJECT IDENTIFIER ::= { ciscoProducts 17 } cisco2502 OBJECT IDENTIFIER ::= { ciscoProducts 18 } cisco2503 OBJECT IDENTIFIER ::= { ciscoProducts 19 } cisco2504 OBJECT IDENTIFIER ::= { ciscoProducts 20 } cisco2505 OBJECT IDENTIFIER ::= { ciscoProducts 21 } cisco2506 OBJECT IDENTIFIER ::= { ciscoProducts 22 } cisco2507 OBJECT IDENTIFIER ::= { ciscoProducts 23 } cisco2508 OBJECT IDENTIFIER ::= { ciscoProducts 24 } cisco2509 OBJECT IDENTIFIER ::= { ciscoProducts 25 } cisco2510 OBJECT IDENTIFIER ::= { ciscoProducts 26 } cisco2511 OBJECT IDENTIFIER ::= { ciscoProducts 27 } cisco2512 OBJECT IDENTIFIER ::= { ciscoProducts 28 } cisco2513 OBJECT IDENTIFIER ::= { ciscoProducts 29 } cisco2514 OBJECT IDENTIFIER ::= { ciscoProducts 30 } cisco2515 OBJECT IDENTIFIER ::= { ciscoProducts 31 } cisco3101 OBJECT IDENTIFIER ::= { ciscoProducts 32 } cisco3102 OBJECT IDENTIFIER ::= { ciscoProducts 33 } cisco3103 OBJECT IDENTIFIER ::= { ciscoProducts 34 } cisco3104 OBJECT IDENTIFIER ::= { ciscoProducts 35 } cisco3202 OBJECT IDENTIFIER ::= { ciscoProducts 36 } cisco3204 OBJECT IDENTIFIER ::= { ciscoProducts 37 } ciscoAccessProRC OBJECT IDENTIFIER ::= { ciscoProducts 38 } ciscoAccessProEC OBJECT IDENTIFIER ::= { ciscoProducts 39 } cisco1000 OBJECT IDENTIFIER ::= { ciscoProducts 40 } cisco1003 OBJECT IDENTIFIER ::= { ciscoProducts 41 } cisco2516 OBJECT IDENTIFIER ::= { ciscoProducts 42 } cisco1020 OBJECT IDENTIFIER ::= { ciscoProducts 43 } cisco1004 OBJECT IDENTIFIER ::= { ciscoProducts 44 } cisco7507 OBJECT IDENTIFIER ::= { ciscoProducts 45 } cisco7513 OBJECT IDENTIFIER ::= { ciscoProducts 46 } cisco7505 OBJECT IDENTIFIER ::= { ciscoProducts 48 } cisco1005 OBJECT IDENTIFIER ::= { ciscoProducts 49 } cisco4700 OBJECT IDENTIFIER ::= { ciscoProducts 50 } ciscoPro1003 OBJECT IDENTIFIER ::= { ciscoProducts 51 } ciscoPro1004 OBJECT IDENTIFIER ::= { ciscoProducts 52 } ciscoPro1005 OBJECT IDENTIFIER ::= { ciscoProducts 53 } ciscoPro2500PCE OBJECT IDENTIFIER ::= { ciscoProducts 55 } ciscoPro2501 OBJECT IDENTIFIER ::= { ciscoProducts 56 } ciscoPro2503 OBJECT IDENTIFIER ::= { ciscoProducts 57 } ciscoPro2505 OBJECT IDENTIFIER ::= { ciscoProducts 58 } ciscoPro2507 OBJECT IDENTIFIER ::= { ciscoProducts 59 } ciscoPro2509 OBJECT IDENTIFIER ::= { ciscoProducts 60 } ciscoPro2511 OBJECT IDENTIFIER ::= { ciscoProducts 61 } ciscoPro2514 OBJECT IDENTIFIER ::= { ciscoProducts 62 } ciscoPro2516 OBJECT IDENTIFIER ::= { ciscoProducts 63 } ciscoPro2519 OBJECT IDENTIFIER ::= { ciscoProducts 64 } ciscoPro4500 OBJECT IDENTIFIER ::= { ciscoProducts 66 } cisco2517 OBJECT IDENTIFIER ::= { ciscoProducts 67 } cisco2518 OBJECT IDENTIFIER ::= { ciscoProducts 68 } cisco2519 OBJECT IDENTIFIER ::= { ciscoProducts 69 } cisco2520 OBJECT IDENTIFIER ::= { ciscoProducts 70 } cisco2521 OBJECT IDENTIFIER ::= { ciscoProducts 71 } cisco2522 OBJECT IDENTIFIER ::= { ciscoProducts 72 } cisco2523 OBJECT IDENTIFIER ::= { ciscoProducts 73 } cisco2524 OBJECT IDENTIFIER ::= { ciscoProducts 74 } cisco2525 OBJECT IDENTIFIER ::= { ciscoProducts 75 } ciscoPro751 OBJECT IDENTIFIER ::= { ciscoProducts 76 } ciscoPro752 OBJECT IDENTIFIER ::= { ciscoProducts 77 } ciscoPro753 OBJECT IDENTIFIER ::= { ciscoProducts 78 } cisco751 OBJECT IDENTIFIER ::= { ciscoProducts 81 } cisco752 OBJECT IDENTIFIER ::= { ciscoProducts 82 } cisco753 OBJECT IDENTIFIER ::= { ciscoProducts 83 } ciscoPro765 OBJECT IDENTIFIER ::= { ciscoProducts 92 } ciscoPro766 OBJECT IDENTIFIER ::= { ciscoProducts 93 } cisco761 OBJECT IDENTIFIER ::= { ciscoProducts 98 } cisco762 OBJECT IDENTIFIER ::= { ciscoProducts 99 } cisco765 OBJECT IDENTIFIER ::= { ciscoProducts 102 } cisco766 OBJECT IDENTIFIER ::= { ciscoProducts 103 } ciscoPro2520 OBJECT IDENTIFIER ::= { ciscoProducts 104 } ciscoPro2522 OBJECT IDENTIFIER ::= { ciscoProducts 105 } ciscoPro2524 OBJECT IDENTIFIER ::= { ciscoProducts 106 } ciscoLS1010 OBJECT IDENTIFIER ::= { ciscoProducts 107 } cisco7206 OBJECT IDENTIFIER ::= { ciscoProducts 108 } ciscoAS5200 OBJECT IDENTIFIER ::= { ciscoProducts 109 } cisco3640 OBJECT IDENTIFIER ::= { ciscoProducts 110 } cisco1601 OBJECT IDENTIFIER ::= { ciscoProducts 113 } cisco1602 OBJECT IDENTIFIER ::= { ciscoProducts 114 } cisco1603 OBJECT IDENTIFIER ::= { ciscoProducts 115 } cisco1604 OBJECT IDENTIFIER ::= { ciscoProducts 116 } ciscoPro1601 OBJECT IDENTIFIER ::= { ciscoProducts 117 } ciscoPro1602 OBJECT IDENTIFIER ::= { ciscoProducts 118 } ciscoPro1603 OBJECT IDENTIFIER ::= { ciscoProducts 119 } ciscoPro1604 OBJECT IDENTIFIER ::= { ciscoProducts 120 } cisco3620 OBJECT IDENTIFIER ::= { ciscoProducts 122 } cisco7204 OBJECT IDENTIFIER ::= { ciscoProducts 125 } ciscoPro316T OBJECT IDENTIFIER ::= { ciscoProducts 147 } ciscoPro316C OBJECT IDENTIFIER ::= { ciscoProducts 148 } ciscoPro3116 OBJECT IDENTIFIER ::= { ciscoProducts 149 } catalyst116T OBJECT IDENTIFIER ::= { ciscoProducts 150 } catalyst116C OBJECT IDENTIFIER ::= { ciscoProducts 151 } catalyst1116 OBJECT IDENTIFIER ::= { ciscoProducts 152 } ciscoAS2509RJ OBJECT IDENTIFIER ::= { ciscoProducts 153 } ciscoAS2511RJ OBJECT IDENTIFIER ::= { ciscoProducts 154 } -- 155 available -- 156 available cisco1503 OBJECT IDENTIFIER ::= { ciscoProducts 160 } cisco1502 OBJECT IDENTIFIER ::= { ciscoProducts 161 } cisco2501FRADFX OBJECT IDENTIFIER ::= { ciscoProducts 165 } cisco2501LANFRADFX OBJECT IDENTIFIER ::= { ciscoProducts 166 } cisco2502LANFRADFX OBJECT IDENTIFIER ::= { ciscoProducts 167 } ciscoFastHub216T OBJECT IDENTIFIER ::= { ciscoProducts 169 } END -- ***************************************************************** -- CISCO-SYSLOG-MIB.my: Cisco syslog message MIB file -- -- August 1995, Scott Mordock -- -- Copyright (c) 1995-1997 by cisco Systems, Inc. -- All rights reserved. -- ***************************************************************** -- -- This MIB provides a means to gather syslog messages generated -- by the Cisco IOS -- Terminology: -- Various textual messages are generated by the Cisco IOS. The IOS -- can be configured such that these messages are sent to a "syslog" -- server. With this MIB these same messages can also be received via -- the SNMP. These messages are hereupon referred to as "syslog -- messages" in this document. Note: Messages generated as a result -- of entering CLI debug commands are not made available via the SNMP -- at this time. -- -- All IOS syslog messages have the following attributes: -- timestamp (optional), facility name (where the message came -- from), severity, message name, message text -- -- The following example is often seen: -- %SYS-5-CONFIG_I: Configured from console ... -- where facility=SYS, severity=5, message name=CONFIG_I CISCO-SYSLOG-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, NOTIFICATION-TYPE, OBJECT-TYPE, Integer32, Counter32 FROM SNMPv2-SMI TEXTUAL-CONVENTION, DisplayString, TimeStamp, TruthValue FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF ciscoMgmt FROM CISCO-SMI; ciscoSyslogMIB MODULE-IDENTITY LAST-UPDATED "9508070000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-snmp@cisco.com" DESCRIPTION "The MIB module to describe and store the system messages generated by the IOS." ::= { ciscoMgmt 41 } ciscoSyslogMIBObjects OBJECT IDENTIFIER ::= { ciscoSyslogMIB 1 } -- Subgroups clogBasic OBJECT IDENTIFIER ::= { ciscoSyslogMIBObjects 1 } clogHistory OBJECT IDENTIFIER ::= { ciscoSyslogMIBObjects 2 } -- Textual Conventions SyslogSeverity ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The severity of a syslog message. The enumeration values are equal to the values that syslog uses + 1. For example, with syslog, emergency=0." SYNTAX INTEGER { emergency(1), alert(2), critical(3), error(4), warning(5), notice(6), info(7), debug(8) } -- Basic syslog objects clogNotificationsSent OBJECT-TYPE SYNTAX Counter32 UNITS "notifications" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of clogMessageGenerated notifications that have been sent. This number may include notifications that were prevented from being transmitted due to reasons such as resource limitations and/or non-connectivity. If one is receiving notifications, one can periodically poll this object to determine if any notifications were missed. If so, a poll of the clogHistoryTable might be appropriate." ::= { clogBasic 1 } clogNotificationsEnabled OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates whether clogMessageGenerated notifications will or will not be sent when a syslog message is generated by the device. Disabling notifications does not prevent syslog messages from being added to the clogHistoryTable." DEFVAL { false } ::= { clogBasic 2 } clogMaxSeverity OBJECT-TYPE SYNTAX SyslogSeverity MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates which syslog severity levels will be processed. Any syslog message with a severity value greater than this value will be ignored by the agent. note: severity numeric values increase as their severity decreases, e.g. error(4) is more severe than debug(8)." DEFVAL { warning } ::= { clogBasic 3 } clogMsgIgnores OBJECT-TYPE SYNTAX Counter32 UNITS "messages" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of syslog messages which were ignored. A message will be ignored if it has a severity value greater than clogMaxSeverity." ::= { clogBasic 4 } clogMsgDrops OBJECT-TYPE SYNTAX Counter32 UNITS "messages" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of syslog messages which could not be processed due to lack of system resources. Most likely this will occur at the same time that syslog messages are generated to indicate this lack of resources. Increases in this object's value may serve as an indication that system resource levels should be examined via other mib objects. A message that is dropped will not appear in the history table and no notification will be sent for this message." ::= { clogBasic 5 } -- Syslog message history table clogHistTableMaxLength OBJECT-TYPE SYNTAX INTEGER (0..500) UNITS "entries" MAX-ACCESS read-write STATUS current DESCRIPTION "The upper limit on the number of entries that the clogHistoryTable may contain. A value of 0 will prevent any history from being retained. When this table is full, the oldest entry will be deleted and a new one will be created." DEFVAL { 1 } ::= { clogHistory 1 } clogHistMsgsFlushed OBJECT-TYPE SYNTAX Counter32 UNITS "messages" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of entries that have been removed from the clogHistoryTable in order to make room for new entries. This object can be utilized to determine whether your polling frequency on the history table is fast enough and/or the size of your history table is large enough such that you are not missing messages." ::= { clogHistory 2 } clogHistoryTable OBJECT-TYPE SYNTAX SEQUENCE OF ClogHistoryEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table of syslog messages generated by this device. All 'interesting' syslog messages (i.e. severity <= clogMaxSeverity) are entered into this table." ::= { clogHistory 3 } clogHistoryEntry OBJECT-TYPE SYNTAX ClogHistoryEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A syslog message that was previously generated by this device. Each entry is indexed by a message index." INDEX { clogHistIndex } ::= { clogHistoryTable 1 } ClogHistoryEntry ::= SEQUENCE { clogHistIndex Integer32, clogHistFacility DisplayString, clogHistSeverity SyslogSeverity, clogHistMsgName DisplayString, clogHistMsgText DisplayString, clogHistTimestamp TimeStamp } clogHistIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "A monotonically increasing integer for the sole purpose of indexing messages. When it reaches the maximum value the agent flushes the table and wraps the value back to 1." ::= { clogHistoryEntry 1 } clogHistFacility OBJECT-TYPE SYNTAX OCTET STRING (SIZE (1..20)) MAX-ACCESS read-only STATUS current DESCRIPTION "Name of the facility that generated this message. For example: 'SYS'." ::= { clogHistoryEntry 2 } clogHistSeverity OBJECT-TYPE SYNTAX SyslogSeverity MAX-ACCESS read-only STATUS current DESCRIPTION "The severity of the message." ::= { clogHistoryEntry 3 } clogHistMsgName OBJECT-TYPE SYNTAX OCTET STRING (SIZE (1..30)) MAX-ACCESS read-only STATUS current DESCRIPTION "A textual identification for the message type. A facility name in conjunction with a message name uniquely identifies a message type." ::= { clogHistoryEntry 4 } clogHistMsgText OBJECT-TYPE SYNTAX OCTET STRING (SIZE (1..255)) MAX-ACCESS read-only STATUS current DESCRIPTION "The text of the message. If the text of the message exceeds 255 bytes, the message will be truncated to 254 bytes and a '*' character will be appended - indicating that the message has been truncated." ::= { clogHistoryEntry 5 } clogHistTimestamp OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when this message was generated." ::= { clogHistoryEntry 6 } -- notifications ciscoSyslogMIBNotificationPrefix OBJECT IDENTIFIER ::= { ciscoSyslogMIB 2 } ciscoSyslogMIBNotifications OBJECT IDENTIFIER ::= { ciscoSyslogMIBNotificationPrefix 0 } clogMessageGenerated NOTIFICATION-TYPE OBJECTS { clogHistFacility, clogHistSeverity, clogHistMsgName, clogHistMsgText, clogHistTimestamp } STATUS current DESCRIPTION "When a syslog message is generated by the device a clogMessageGenerated notification is sent. The sending of these notifications can be enabled/disabled via the clogNotificationsEnabled object." ::= { ciscoSyslogMIBNotifications 1 } -- conformance information ciscoSyslogMIBConformance OBJECT IDENTIFIER ::= { ciscoSyslogMIB 3 } ciscoSyslogMIBCompliances OBJECT IDENTIFIER ::= { ciscoSyslogMIBConformance 1 } ciscoSyslogMIBGroups OBJECT IDENTIFIER ::= { ciscoSyslogMIBConformance 2 } -- compliance statements ciscoSyslogMIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for entities which implement the Cisco syslog MIB." MODULE -- this module MANDATORY-GROUPS { ciscoSyslogMIBGroup } ::= { ciscoSyslogMIBCompliances 1 } -- units of conformance ciscoSyslogMIBGroup OBJECT-GROUP OBJECTS { clogNotificationsSent, clogNotificationsEnabled, clogMaxSeverity, clogMsgIgnores, clogMsgDrops, clogHistTableMaxLength, clogHistMsgsFlushed, clogHistFacility, clogHistSeverity, clogHistMsgName, clogHistMsgText, clogHistTimestamp } STATUS current DESCRIPTION "A collection of objects providing the syslog MIB capability." ::= { ciscoSyslogMIBGroups 1 } END -- ***************************************************************** -- CISCO-CALL-HISTORY-MIB.my: Cisco call history MIB file -- -- January 1995, Bibek A. Das -- -- Copyright (c) 1995-1997 by cisco Systems, Inc. -- All rights reserved. -- -- ***************************************************************** CISCO-CALL-HISTORY-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, Integer32 FROM SNMPv2-SMI DisplayString, TimeStamp FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF InterfaceIndex FROM IF-MIB ciscoMgmt FROM CISCO-SMI; ciscoCallHistoryMib MODULE-IDENTITY LAST-UPDATED "9611190000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-wan@cisco.com" DESCRIPTION "The MIB module to describe and store the call information of the routers for accounting purposes." REVISION "9508150000Z" DESCRIPTION "Fix typo which caused conflicting syntax." REVISION "9507200000Z" DESCRIPTION "Add a new object ciscoCallHistoryDialReason to the call history table." REVISION "9508150000Z" DESCRIPTION "Add new objects to the call history table to store the time of day, and transmitted/received packets/bytes." REVISION "9611190000Z" DESCRIPTION "Add new objects to the call history table to store the advice of charge information for recorded units or currency type, amount and multipler." ::= { ciscoMgmt 27 } -- This MIB describes the objects defined and used for storing the -- call information for all calls. -- Call History Mib objects definitions ciscoCallHistoryMibObjects OBJECT IDENTIFIER ::= { ciscoCallHistoryMib 1 } ciscoCallHistory OBJECT IDENTIFIER ::= { ciscoCallHistoryMibObjects 1 } ciscoCallHistoryTableMaxLength OBJECT-TYPE SYNTAX INTEGER (0..500) MAX-ACCESS read-write STATUS current DESCRIPTION "The upper limit on the number of entries that the ciscoCallHistoryTable may contain. A value of 0 will prevent any history from being retained. When this table is full, the oldest entry will be deleted and the new one will be created." DEFVAL { 100 } ::= { ciscoCallHistory 1 } ciscoCallHistoryRetainTimer OBJECT-TYPE SYNTAX INTEGER (0..500) UNITS "minutes" MAX-ACCESS read-write STATUS current DESCRIPTION "The minimum amount of time that an ciscoCallHistoryEntry will be maintained before being deleted. A value of 0 will prevent any history from being retained, but will not prevent callCompletion traps being genarated." DEFVAL { 15 } ::= { ciscoCallHistory 2 } -- ciscoCallHistoryTable -- Table to store the past call information. The call information will -- include the destination number, the call connect time, the call -- disconnect time and the disconnection cause. These calls could -- be circuit switched or they could be virtual circuits. -- History of each and every call will be stored. An entry will be -- created when a call gets disconnected. At the time -- of creation, the entry will contain the connect time and the -- disconnect time and other call information." ciscoCallHistoryTable OBJECT-TYPE SYNTAX SEQUENCE OF CallHistoryEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table containing information about specific calls to a specific destination." ::= { ciscoCallHistory 3 } ciscoCallHistoryEntry OBJECT-TYPE SYNTAX CallHistoryEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The information regarding a single Connection." INDEX { ciscoCallHistoryStartTime, ciscoCallHistoryIndex } ::= { ciscoCallHistoryTable 1 } CallHistoryEntry ::= SEQUENCE { ciscoCallHistoryStartTime TimeStamp, ciscoCallHistoryIndex Integer32, ciscoCallHistoryCallingNumber OCTET STRING, ciscoCallHistoryCalledNumber OCTET STRING, ciscoCallHistoryInterfaceNumber InterfaceIndex, ciscoCallHistoryDestinationAddress OCTET STRING, ciscoCallHistoryDestinationHostName DisplayString, ciscoCallHistoryCallDisconnectCause INTEGER, ciscoCallHistoryCallConnectionTime TimeStamp, ciscoCallHistoryCallDisconnectTime TimeStamp, ciscoCallHistoryDialReason DisplayString, ciscoCallHistoryConnectTimeOfDay DisplayString, ciscoCallHistoryDisconnectTimeOfDay DisplayString, ciscoCallHistoryTransmitPackets Integer32, ciscoCallHistoryTransmitBytes Integer32, ciscoCallHistoryReceivePackets Integer32, ciscoCallHistoryReceiveBytes Integer32, ciscoCallHistoryRecordedUnits Integer32, ciscoCallHistoryCurrency DisplayString, ciscoCallHistoryCurrencyAmount Integer32, ciscoCallHistoryMultiplier INTEGER } ciscoCallHistoryStartTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of sysUpTime when this call history entry was created. This will be useful for an NMS to retrieve all calls after a specific time." ::= { ciscoCallHistoryEntry 1 } ciscoCallHistoryIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "Index variable to access the CallHistoryEntry objects of the ciscoCallHistoryTable." ::= { ciscoCallHistoryEntry 2 } ciscoCallHistoryCallingNumber OBJECT-TYPE SYNTAX OCTET STRING (SIZE (255)) MAX-ACCESS read-only STATUS current DESCRIPTION "The calling number for this call. If the number is not available, then it will have a length of zero." ::= { ciscoCallHistoryEntry 3 } ciscoCallHistoryCalledNumber OBJECT-TYPE SYNTAX OCTET STRING (SIZE (255)) MAX-ACCESS read-only STATUS current DESCRIPTION "The number this call is connected to." ::= { ciscoCallHistoryEntry 4 } ciscoCallHistoryInterfaceNumber OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS read-only STATUS current DESCRIPTION "This is the ifIndex value of the highest number of interface through which the call was made." ::= { ciscoCallHistoryEntry 5 } ciscoCallHistoryDestinationAddress OBJECT-TYPE SYNTAX OCTET STRING (SIZE (60)) MAX-ACCESS read-only STATUS current DESCRIPTION "The address of the host this call is connected to. Most devices/routers connected to an interface have an address and this object will store that." ::= { ciscoCallHistoryEntry 6 } ciscoCallHistoryDestinationHostName OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "The name of the host this call is connected to. Most devices/routers connected to an interface have a name and this object will store that name." ::= { ciscoCallHistoryEntry 7 } ciscoCallHistoryCallDisconnectCause OBJECT-TYPE SYNTAX INTEGER { other(1), normalDisconnectSent(2), normalDisconnectReceived(3), networkOutOfOrder(4), callRejected(5), userBusy(6), noCircuitChannelAvailable(7), interworkingError(8) } MAX-ACCESS read-only STATUS current DESCRIPTION "The reason for the call termination." ::= { ciscoCallHistoryEntry 8 } ciscoCallHistoryCallConnectionTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the call was connected." ::= { ciscoCallHistoryEntry 9 } ciscoCallHistoryCallDisconnectTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the call got disconnected last." ::= { ciscoCallHistoryEntry 10 } ciscoCallHistoryDialReason OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "The reason for initiating this call. This may include the destination address of the interesting packet that forced us to dial." ::= { ciscoCallHistoryEntry 11 } ciscoCallHistoryConnectTimeOfDay OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "The time of day at the time of call connect." ::= { ciscoCallHistoryEntry 12 } ciscoCallHistoryDisconnectTimeOfDay OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "The time of day when the call disconnected." ::= { ciscoCallHistoryEntry 13 } ciscoCallHistoryTransmitPackets OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of packets transmitted when this call was up." ::= { ciscoCallHistoryEntry 14 } ciscoCallHistoryTransmitBytes OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of Bytes transmitted when this call was up." ::= { ciscoCallHistoryEntry 15 } ciscoCallHistoryReceivePackets OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of packets received when this call was up." ::= { ciscoCallHistoryEntry 16 } ciscoCallHistoryReceiveBytes OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of Bytes received when this call was up." ::= { ciscoCallHistoryEntry 17 } ciscoCallHistoryRecordedUnits OBJECT-TYPE SYNTAX INTEGER (0..16777215) MAX-ACCESS read-only STATUS current DESCRIPTION "Advice of Charge recorded units when this call was up." REFERENCE "ISDN AOC supplementary service DSS1 protocol ETS 300 182" ::= { ciscoCallHistoryEntry 18 } ciscoCallHistoryCurrency OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "Advice of Charge currency type." REFERENCE "ISDN AOC supplementary service DSS1 protocol ETS 300 182" ::= { ciscoCallHistoryEntry 19 } ciscoCallHistoryCurrencyAmount OBJECT-TYPE SYNTAX INTEGER (0..16777215) MAX-ACCESS read-only STATUS current DESCRIPTION "Advice of Charge currency amount when this call was up." REFERENCE "ISDN AOC supplementary service DSS1 protocol ETS 300 182" ::= { ciscoCallHistoryEntry 20 } ciscoCallHistoryMultiplier OBJECT-TYPE SYNTAX INTEGER { oneThousandth(0), oneHundreth(1), oneTenth(2), one(3), ten(4), hundred(5), thousand(6) } MAX-ACCESS read-only STATUS current DESCRIPTION "Advice of Charge multiplier for currency amount" REFERENCE "ISDN AOC supplementary service DSS1 protocol ETS 300 182" ::= { ciscoCallHistoryEntry 21 } -- conformance information ciscoCallHistoryMibConformance OBJECT IDENTIFIER ::= { ciscoCallHistoryMib 2 } ciscoCallHistoryMibCompliances OBJECT IDENTIFIER ::= { ciscoCallHistoryMibConformance 1 } ciscoCallHistoryMibGroups OBJECT IDENTIFIER ::= { ciscoCallHistoryMibConformance 2 } -- compliance statements ciscoCallHistoryMibCompliance MODULE-COMPLIANCE STATUS obsolete -- superseded by ciscoCallHistoryMibComplianceRev1 DESCRIPTION "The compliance statement for entities which implement the Cisco call History MIB" MODULE -- this module MANDATORY-GROUPS { ciscoCallHistoryMibGroup } ::= { ciscoCallHistoryMibCompliances 1 } ciscoCallHistoryMibComplianceRev1 MODULE-COMPLIANCE STATUS obsolete -- superseded by ciscoCallHistoryMibComplianceV11R01 DESCRIPTION "The compliance statement for entities which implement the Cisco call History MIB" MODULE -- this module MANDATORY-GROUPS { ciscoCallHistoryMibGroupRev1 } ::= { ciscoCallHistoryMibCompliances 2 } ciscoCallHistoryMibComplianceV11R01 MODULE-COMPLIANCE STATUS obsolete -- superseded by ciscoCallHistoryMibComplianceV11R02 DESCRIPTION "The compliance statement for entities which implement the Cisco call History MIB" MODULE -- this module MANDATORY-GROUPS { ciscoCallHistoryMibGroupRev1, ciscoCallHistoryMibGlobalsGroup } ::= { ciscoCallHistoryMibCompliances 3 } ciscoCallHistoryMibComplianceV11R02 MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for entities which implement the Cisco call History MIB" MODULE -- this module MANDATORY-GROUPS { ciscoCallHistoryMibGroupRev2, ciscoCallHistoryMibGlobalsGroup } ::= { ciscoCallHistoryMibCompliances 4 } -- units of conformance ciscoCallHistoryMibGroup OBJECT-GROUP OBJECTS { ciscoCallHistoryCallingNumber, ciscoCallHistoryCalledNumber, ciscoCallHistoryInterfaceNumber, ciscoCallHistoryDestinationAddress, ciscoCallHistoryDestinationHostName, ciscoCallHistoryCallDisconnectCause, ciscoCallHistoryCallConnectionTime, ciscoCallHistoryCallDisconnectTime } STATUS obsolete -- superseded by ciscoCallHistoryMibGroupRev1 DESCRIPTION "A collection of objects providing the call History MIB capability." ::= { ciscoCallHistoryMibGroups 1 } ciscoCallHistoryMibGroupRev1 OBJECT-GROUP OBJECTS { ciscoCallHistoryCallingNumber, ciscoCallHistoryCalledNumber, ciscoCallHistoryInterfaceNumber, ciscoCallHistoryDestinationAddress, ciscoCallHistoryDestinationHostName, ciscoCallHistoryCallDisconnectCause, ciscoCallHistoryCallConnectionTime, ciscoCallHistoryCallDisconnectTime, ciscoCallHistoryDialReason, ciscoCallHistoryConnectTimeOfDay, ciscoCallHistoryDisconnectTimeOfDay, ciscoCallHistoryTransmitPackets, ciscoCallHistoryTransmitBytes, ciscoCallHistoryReceivePackets, ciscoCallHistoryReceiveBytes } STATUS obsolete -- superseded by ciscoCallHistoryMibGroupRev2 DESCRIPTION "A collection of objects providing the call History MIB capability." ::= { ciscoCallHistoryMibGroups 2 } ciscoCallHistoryMibGroupRev2 OBJECT-GROUP OBJECTS { ciscoCallHistoryCallingNumber, ciscoCallHistoryCalledNumber, ciscoCallHistoryInterfaceNumber, ciscoCallHistoryDestinationAddress, ciscoCallHistoryDestinationHostName, ciscoCallHistoryCallDisconnectCause, ciscoCallHistoryCallConnectionTime, ciscoCallHistoryCallDisconnectTime, ciscoCallHistoryDialReason, ciscoCallHistoryConnectTimeOfDay, ciscoCallHistoryDisconnectTimeOfDay, ciscoCallHistoryTransmitPackets, ciscoCallHistoryTransmitBytes, ciscoCallHistoryReceivePackets, ciscoCallHistoryReceiveBytes, ciscoCallHistoryRecordedUnits, ciscoCallHistoryCurrency, ciscoCallHistoryCurrencyAmount, ciscoCallHistoryMultiplier } STATUS current DESCRIPTION "A collection of objects providing the call History MIB capability." ::= { ciscoCallHistoryMibGroups 3 } ciscoCallHistoryMibGlobalsGroup OBJECT-GROUP OBJECTS { ciscoCallHistoryTableMaxLength, ciscoCallHistoryRetainTimer } STATUS current DESCRIPTION "A collection of objects providing control over the retention of call History." ::= { ciscoCallHistoryMibGroups 4 } END -- ***************************************************************** -- CISCO-ISDN-MIB.my: Cisco ISDN MIB file -- -- January 1995, Fred Baker, Bibek A. Das -- -- Copyright (c) 1995-1996 by cisco Systems, Inc. -- All rights reserved. -- -- ***************************************************************** CISCO-ISDN-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, NOTIFICATION-TYPE, Counter32, OBJECT-TYPE, Integer32 FROM SNMPv2-SMI DisplayString, TimeStamp, RowStatus FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF ciscoMgmt FROM CISCO-SMI; ciscoIsdnMib MODULE-IDENTITY LAST-UPDATED "9508150000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-isdn@cisco.com" DESCRIPTION "The MIB module to describe the status of the ISDN Interfaces on the routers." REVISION "9602210000Z" DESCRIPTION "Add a new object demandNbrCallOrigin." REVISION "9508150000Z" DESCRIPTION "Specify a correct (non-negative) range for an index object." REVISION "9501300000Z" DESCRIPTION "Initial version of Cisco ISDN MIB." ::= { ciscoMgmt 26 } -- The ISDN hardware interface (BRI or PRI) will be represented -- by the D channel. This will have an ifType value of basicISDN(20) -- or primaryISDN(21), refer to RFC 1213. Each B channel will -- also be represented in an an entry in the ifTable. The B -- channels will have an ifType value of other(1). -- This model will be used while defining objects and tables -- for management. -- The ISDN MIB will allow sub-layers. For example, the data transfer -- over a B channel may take place with PPP encapsulation. While the -- ISDN MIB will describe the B channel, a media specific MIB for -- PPP can be used on a layered basis. This will be as per RFC 1573. -- The isdn call information will be stored in the neighbor table -- Isdn Mib objects definitions ciscoIsdnMibObjects OBJECT IDENTIFIER ::= { ciscoIsdnMib 1 } isdnNeighbor OBJECT IDENTIFIER ::= { ciscoIsdnMibObjects 1 } demandNbrTable OBJECT-TYPE SYNTAX SEQUENCE OF DemandNbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The list of neighbors from which the router will accept calls or to which it will place them." ::= { isdnNeighbor 1 } demandNbrEntry OBJECT-TYPE SYNTAX DemandNbrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A single Neighbor. This entry is effectively permanent, and contains information describing the neighbor, his permissions, his last call attempt, and his cumulative effects." INDEX {demandNbrPhysIf, demandNbrId } ::= { demandNbrTable 1 } DemandNbrEntry ::= SEQUENCE { demandNbrPhysIf Integer32 (1..2147483647), -- ifIndex value -- of the D channel demandNbrId Integer32 (0..2147483647), -- sequence number demandNbrLogIf Integer32 (1..2147483647), -- ifIndex value of -- virtual interface demandNbrName DisplayString, -- name of the neighbor demandNbrAddress DisplayString, -- Call Address demandNbrPermission INTEGER, -- applicable permissions demandNbrMaxDuration Integer32 (1..2147483647), -- Max call duration -- in seconds demandNbrLastDuration Integer32 (1..2147483647), -- Duration of last -- call demandNbrClearReason DisplayString, -- reason last call completed demandNbrClearCode OCTET STRING, -- reason last call completed demandNbrSuccessCalls Counter32, -- number of completed calls to -- neighbor demandNbrFailCalls Counter32, -- number of failed call attempts demandNbrAcceptCalls Counter32, -- number of calls from neighbor -- accepted demandNbrRefuseCalls Counter32, -- number of calls from neighbor -- refused demandNbrLastAttemptTime TimeStamp, -- sysUpTime of last -- call attempt demandNbrStatus RowStatus, demandNbrCallOrigin INTEGER } demandNbrPhysIf OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "ifIndex value of the physical interface the neighbor will be called on. On an ISDN interface, this is the ifIndex value of the D channel." ::= { demandNbrEntry 1 } demandNbrId OBJECT-TYPE SYNTAX INTEGER (0..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "arbitrary sequence number associated with the neighbor." ::= { demandNbrEntry 2 } demandNbrLogIf OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS read-create STATUS current DESCRIPTION "ifIndex value of virtual interface associated with the neighbor. This interface maintains a queue of messages holding for the neighbor awaiting call completion, and all statistics." ::= { demandNbrEntry 3 } demandNbrName OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-create STATUS current DESCRIPTION "ASCII name of the neighbor." ::= { demandNbrEntry 4 } demandNbrAddress OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-create STATUS current DESCRIPTION "Call Address at which the neighbor should be called. Think of this as the set of characters following 'ATDT ' or the 'phone number' included in a D channel call request." ::= { demandNbrEntry 5 } demandNbrPermission OBJECT-TYPE SYNTAX INTEGER { iCanCallHim (1), heCanCallMe (2), weCanCallEachOther (3) } MAX-ACCESS read-create STATUS current DESCRIPTION "applicable permissions." DEFVAL { weCanCallEachOther } ::= { demandNbrEntry 6 } demandNbrMaxDuration OBJECT-TYPE SYNTAX INTEGER (1..2147483647) UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "Maximum call duration in seconds." DEFVAL { 2147483647 } ::= { demandNbrEntry 7 } demandNbrLastDuration OBJECT-TYPE SYNTAX INTEGER (1..2147483647) UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "Duration of last call in seconds." ::= { demandNbrEntry 8 } demandNbrClearReason OBJECT-TYPE SYNTAX DisplayString MAX-ACCESS read-only STATUS current DESCRIPTION "ASCII reason that the last call terminated." ::= { demandNbrEntry 9 } demandNbrClearCode OBJECT-TYPE SYNTAX OCTET STRING MAX-ACCESS read-only STATUS current DESCRIPTION "encoded reason for the last call tear down." ::= { demandNbrEntry 10 } demandNbrSuccessCalls OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "number of completed calls to neighbor since system reset." ::= { demandNbrEntry 11 } demandNbrFailCalls OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of call attempts that have failed." ::= { demandNbrEntry 12 } demandNbrAcceptCalls OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of calls accepted from the neighbor." ::= { demandNbrEntry 13 } demandNbrRefuseCalls OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "Number of calls from neighbor that we have refused." ::= { demandNbrEntry 14 } demandNbrLastAttemptTime OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "sysUpTime of last call attempt." ::= { demandNbrEntry 15 } demandNbrStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "Somebody might want to manage the device using SNMP some day..." ::= { demandNbrEntry 16 } demandNbrCallOrigin OBJECT-TYPE SYNTAX INTEGER { originate(1), answer(2), callback(3) } MAX-ACCESS read-only STATUS current DESCRIPTION "Indication of outgoing or incoming call." ::= { demandNbrEntry 17 } -- Traps related to Connection management ciscoIsdnMibTrapPrefix OBJECT IDENTIFIER ::= { ciscoIsdnMib 2 } ciscoIsdnMibTraps OBJECT IDENTIFIER ::= { ciscoIsdnMibTrapPrefix 0 } demandNbrCallInformation NOTIFICATION-TYPE OBJECTS { demandNbrLogIf, demandNbrName, demandNbrAddress, demandNbrLastDuration, demandNbrClearReason, demandNbrClearCode } STATUS obsolete DESCRIPTION "This trap/inform is sent to the manager whenever a successful call clears, or a failed call attempt is determined to have ultimately failed. In the event that call retry is active, then this is after all retry attempts have failed. However, only one such trap is sent in between successful call attempts; subsequent call attempts result in no trap." ::= { ciscoIsdnMibTraps 1 } demandNbrCallDetails NOTIFICATION-TYPE OBJECTS { demandNbrLogIf, demandNbrName, demandNbrAddress, demandNbrLastDuration, demandNbrClearReason, demandNbrClearCode, demandNbrCallOrigin } STATUS current DESCRIPTION "This trap/inform is sent to the manager whenever a call connects, or clears, or a failed call attempt is determined to have ultimately failed. In the event that call retry is active, then this is after all retry attempts have failed. However, only one such trap is sent in between successful call attempts; subsequent call attempts result in no trap." ::= { ciscoIsdnMibTraps 2 } -- conformance information ciscoIsdnMibConformance OBJECT IDENTIFIER ::= { ciscoIsdnMib 3 } ciscoIsdnMibCompliances OBJECT IDENTIFIER ::= { ciscoIsdnMibConformance 1 } ciscoIsdnMibGroups OBJECT IDENTIFIER ::= { ciscoIsdnMibConformance 2 } -- compliance statements ciscoIsdnMibCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for entities which implement the Cisco ISDN MIB" MODULE -- this module MANDATORY-GROUPS { ciscoIsdnMibGroup } ::= { ciscoIsdnMibCompliances 1 } ciscoIsdnMibComplianceRev1 MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for entities which implement the Cisco ISDN MIB" MODULE -- this module MANDATORY-GROUPS { ciscoIsdnMibGroupRev1 } ::= { ciscoIsdnMibCompliances 2 } -- units of conformance ciscoIsdnMibGroup OBJECT-GROUP OBJECTS { demandNbrLogIf, demandNbrName, demandNbrAddress, demandNbrPermission, demandNbrMaxDuration, demandNbrLastDuration, demandNbrClearReason, demandNbrClearCode, demandNbrSuccessCalls, demandNbrFailCalls, demandNbrAcceptCalls, demandNbrRefuseCalls, demandNbrLastAttemptTime, demandNbrStatus } STATUS current DESCRIPTION "A collection of objects providing the ISDN MIB capability." ::= { ciscoIsdnMibGroups 1 } ciscoIsdnMibGroupRev1 OBJECT-GROUP OBJECTS { demandNbrLogIf, demandNbrName, demandNbrAddress, demandNbrPermission, demandNbrMaxDuration, demandNbrLastDuration, demandNbrClearReason, demandNbrClearCode, demandNbrSuccessCalls, demandNbrFailCalls, demandNbrAcceptCalls, demandNbrRefuseCalls, demandNbrLastAttemptTime, demandNbrStatus, demandNbrCallOrigin } STATUS current DESCRIPTION "A collection of objects providing the call origin capability." ::= { ciscoIsdnMibGroups 2 } END -- ***************************************************************** -- CISCO-CONFIG-MAN-MIB.my: Configuration Management MIB -- -- April 1995, Bob Stewart -- -- Copyright (c) 1995-1996 by cisco Systems, Inc. -- All rights reserved. -- -- ***************************************************************** CISCO-CONFIG-MAN-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, TimeTicks, Integer32, Counter32, IpAddress FROM SNMPv2-SMI MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF DisplayString, TEXTUAL-CONVENTION FROM SNMPv2-TC ciscoMgmt FROM CISCO-SMI; ciscoConfigManMIB MODULE-IDENTITY LAST-UPDATED "9511280000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-snmp@cisco.com" DESCRIPTION "Configuration management MIB. The MIB represents a model of configuration data that exists in various locations: running in use by the running system terminal operator's mind or attached hardware local saved locally in NVRAM or flash remote saved to some server on the network Although some of the system functions that relate here can be used for general file storage and transfer, this MIB intends to include only such operations as clearly relate to configuration. Its primary emphasis is to track changes and saves of the running configuration. As saved data moves further from startup use, such as into different local flash files or onto the network, tracking becomes difficult to impossible, so the MIB's interest and functions are confined in that area." REVISION "9511280000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 43 } ciscoConfigManMIBObjects OBJECT IDENTIFIER ::= { ciscoConfigManMIB 1 } ccmHistory OBJECT IDENTIFIER ::= { ciscoConfigManMIBObjects 1 } -- Textual Conventions HistoryEventMedium ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The source or destination of a configuration change, save, or copy. erase erasing destination (source only) running live operational data commandSource the command source itself startup what the system will use next reboot local local NVRAM or flash networkTftp network host via Trivial File Transfer networkRcp network host via Remote Copy " SYNTAX INTEGER { erase(1), commandSource(2), running(3), startup(4), local(5), networkTftp(6), networkRcp(7) } -- Configuration History ccmHistoryRunningLastChanged OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the running configuration was last changed. If the value of ccmHistoryRunningLastChanged is greater than ccmHistoryRunningLastSaved, the configuration has been changed but not saved." ::= { ccmHistory 1 } ccmHistoryRunningLastSaved OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the running configuration was last saved (written). If the value of ccmHistoryRunningLastChanged is greater than ccmHistoryRunningLastSaved, the configuration has been changed but not saved. What constitutes a safe saving of the running configuration is a management policy issue beyond the scope of this MIB. For some installations, writing the running configuration to a terminal may be a way of capturing and saving it. Others may use local or remote storage. Thus ANY write is considered saving for the purposes of the MIB." ::= { ccmHistory 2 } ccmHistoryStartupLastChanged OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the startup configuration was last written to. In general this is the default configuration used when cold starting the system. It may have been changed by a save of the running configuration or by a copy from elsewhere." ::= { ccmHistory 3 } ccmHistoryMaxEventEntries OBJECT-TYPE SYNTAX INTEGER (0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum number of entries that can be held in ccmHistoryEventTable. The recommended value for implementations is 10." ::= { ccmHistory 4 } ccmHistoryEventEntriesBumped OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times the oldest entry in ccmHistoryEventTable was deleted to make room for a new entry." ::= { ccmHistory 5 } ccmHistoryEventTable OBJECT-TYPE SYNTAX SEQUENCE OF CcmHistoryEventEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table of configuration events on this router." ::= { ccmHistory 6 } ccmHistoryEventEntry OBJECT-TYPE SYNTAX CcmHistoryEventEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a configuration event on this router." INDEX { ccmHistoryEventIndex } ::= { ccmHistoryEventTable 1 } CcmHistoryEventEntry ::= SEQUENCE { ccmHistoryEventIndex Integer32, ccmHistoryEventTime TimeTicks, ccmHistoryEventCommandSource INTEGER, ccmHistoryEventConfigSource HistoryEventMedium, ccmHistoryEventConfigDestination HistoryEventMedium, ccmHistoryEventTerminalType INTEGER, ccmHistoryEventTerminalNumber Integer32, ccmHistoryEventTerminalUser DisplayString, ccmHistoryEventTerminalLocation DisplayString, ccmHistoryEventCommandSourceAddress IpAddress, ccmHistoryEventVirtualHostName DisplayString, ccmHistoryEventServerAddress IpAddress, ccmHistoryEventFile DisplayString, ccmHistoryEventRcpUser DisplayString } ccmHistoryEventIndex OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "A monotonically increasing integer for the sole purpose of indexing events. When it reaches the maximum value, an extremely unlikely event, the agent wraps the value back to 1 and may flush existing entries." ::= { ccmHistoryEventEntry 1 } ccmHistoryEventTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The value of sysUpTime when the event occurred." ::= { ccmHistoryEventEntry 2 } ccmHistoryEventCommandSource OBJECT-TYPE SYNTAX INTEGER { commandLine(1), snmp(2) } MAX-ACCESS read-only STATUS current DESCRIPTION "The source of the command that instigated the event." ::= { ccmHistoryEventEntry 3 } ccmHistoryEventConfigSource OBJECT-TYPE SYNTAX HistoryEventMedium MAX-ACCESS read-only STATUS current DESCRIPTION "The configuration data source for the event." ::= { ccmHistoryEventEntry 4 } ccmHistoryEventConfigDestination OBJECT-TYPE SYNTAX HistoryEventMedium MAX-ACCESS read-only STATUS current DESCRIPTION "The configuration data destination for the event." ::= { ccmHistoryEventEntry 5 } ccmHistoryEventTerminalType OBJECT-TYPE SYNTAX INTEGER { notApplicable(1), unknown(2), console(3), terminal(4), virtual(5), auxiliary(6) } MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventCommandSource is 'commandLine', the terminal type, otherwise 'notApplicable'." ::= { ccmHistoryEventEntry 6 } ccmHistoryEventTerminalNumber OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventCommandSource is 'commandLine', the terminal number. The value is -1 if not available or not applicable." ::= { ccmHistoryEventEntry 7 } ccmHistoryEventTerminalUser OBJECT-TYPE -- ??? Check max size. SYNTAX OCTET STRING (SIZE (0..64)) MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventCommandSource is 'commandLine', the name of the logged in user. The length is zero if not available or not applicable." ::= { ccmHistoryEventEntry 8 } ccmHistoryEventTerminalLocation OBJECT-TYPE -- ??? Check max size. SYNTAX OCTET STRING (SIZE (0..64)) MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventCommandSource is 'commandLine', the hard-wired location of the terminal or the remote host for an incoming connection. The length is zero if not available or not applicable." ::= { ccmHistoryEventEntry 9 } ccmHistoryEventCommandSourceAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventTerminalType is 'virtual', the internet address of the connected system. If ccmHistoryEventCommandSource is 'snmp', the internet address of the requester. The value is 0.0.0.0 if not available or not applicable." ::= { ccmHistoryEventEntry 10 } ccmHistoryEventVirtualHostName OBJECT-TYPE -- ??? Check max size. SYNTAX OCTET STRING (SIZE (0..64)) MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventTerminalType is 'virtual', the host name of the connected system. The length is zero if not available or not applicable." ::= { ccmHistoryEventEntry 11 } ccmHistoryEventServerAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventConfigSource or ccmHistoryEventConfigDestination is 'networkTftp' or 'networkRcp', the internet address of the storage file server. The value is 0.0.0.0 if not applicable or not available." ::= { ccmHistoryEventEntry 12 } ccmHistoryEventFile OBJECT-TYPE -- ??? Check max size. SYNTAX OCTET STRING (SIZE (0..64)) MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventConfigSource or ccmHistoryEventConfigDestination is 'networkTftp' or 'networkRcp', the configuration file name at the storage file server. The length is zero if not available or not applicable." ::= { ccmHistoryEventEntry 13 } ccmHistoryEventRcpUser OBJECT-TYPE -- ??? Check max size. SYNTAX OCTET STRING (SIZE (0..64)) MAX-ACCESS read-only STATUS current DESCRIPTION "If ccmHistoryEventConfigSource or ccmHistoryEventConfigDestination is 'networkRcp', the remote user name. The length is zero if not applicable or not available." ::= { ccmHistoryEventEntry 14 } -- Notifications ciscoConfigManMIBNotificationPrefix OBJECT IDENTIFIER ::= { ciscoConfigManMIB 2 } ciscoConfigManMIBNotifications OBJECT IDENTIFIER ::= { ciscoConfigManMIBNotificationPrefix 0 } ciscoConfigManEvent NOTIFICATION-TYPE OBJECTS { ccmHistoryEventCommandSource, ccmHistoryEventConfigSource, ccmHistoryEventConfigDestination } STATUS current DESCRIPTION "Notification of a configuration management event as recorded in ccmHistoryEventTable." ::= { ciscoConfigManMIBNotifications 1 } -- Conformance ciscoConfigManMIBConformance OBJECT IDENTIFIER ::= { ciscoConfigManMIB 3 } ciscoConfigManMIBCompliances OBJECT IDENTIFIER ::= { ciscoConfigManMIBConformance 1 } ciscoConfigManMIBGroups OBJECT IDENTIFIER ::= { ciscoConfigManMIBConformance 2 } -- Compliance ciscoConfigManMIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for entities which implement the Cisco Configuration Management MIB" MODULE -- this module MANDATORY-GROUPS { ciscoConfigManHistoryGroup } ::= { ciscoConfigManMIBCompliances 1 } -- Units of Conformance ciscoConfigManHistoryGroup OBJECT-GROUP OBJECTS { ccmHistoryRunningLastChanged, ccmHistoryRunningLastSaved, ccmHistoryStartupLastChanged, ccmHistoryMaxEventEntries, ccmHistoryEventEntriesBumped, ccmHistoryEventTime, ccmHistoryEventCommandSource, ccmHistoryEventConfigSource, ccmHistoryEventConfigDestination, ccmHistoryEventTerminalType, ccmHistoryEventTerminalNumber, ccmHistoryEventTerminalUser, ccmHistoryEventTerminalLocation, ccmHistoryEventCommandSourceAddress, ccmHistoryEventVirtualHostName, ccmHistoryEventServerAddress, ccmHistoryEventFile, ccmHistoryEventRcpUser } STATUS current DESCRIPTION "Configuration history." ::= { ciscoConfigManMIBGroups 1 } END -- ***************************************************************** -- CISCO-PING-MIB.my: Cisco Ping MIB file -- -- May 1994, Jeffrey T. Johnson -- -- Copyright (c) 1994-1996 by cisco Systems, Inc. -- All rights reserved. -- -- ***************************************************************** CISCO-PING-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Integer32, Counter32 FROM SNMPv2-SMI TruthValue, RowStatus FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF OwnerString FROM IF-MIB ciscoMgmt FROM CISCO-SMI CiscoNetworkProtocol, CiscoNetworkAddress FROM CISCO-TC; ciscoPingMIB MODULE-IDENTITY LAST-UPDATED "9411110000Z" ORGANIZATION "Cisco Systems, Inc." CONTACT-INFO " Cisco Systems Customer Service Postal: 170 W Tasman Drive San Jose, CA 95134 USA Tel: +1 800 553-NETS E-mail: cs-snmp@cisco.com" DESCRIPTION "" REVISION "9411110000Z" DESCRIPTION "Redefined Ping completion trap." REVISION "9407220000Z" DESCRIPTION "Initial version of this MIB module." ::= { ciscoMgmt 16 } ciscoPingMIBObjects OBJECT IDENTIFIER ::= { ciscoPingMIB 1 } ciscoPingTable OBJECT-TYPE SYNTAX SEQUENCE OF CiscoPingEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table of ping request entries." ::= { ciscoPingMIBObjects 1 } ciscoPingEntry OBJECT-TYPE SYNTAX CiscoPingEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A ping request entry. A management station wishing to create an entry should first generate a pseudo-random serial number to be used as the index to this sparse table. The station should then create the associated instance of the row status and row owner objects. It must also, either in the same or in successive PDUs, create the associated instance of the protocol and address objects. It should also modify the default values for the other configuration objects if the defaults are not appropriate. Once the appropriate instance of all the configuration objects have been created, either by an explicit SNMP set request or by default, the row status should be set to active to initiate the request. Note that this entire procedure may be initiated via a single set request which specifies a row status of createAndGo as well as specifies valid values for the non-defaulted configuration objects. Once the ping sequence has been activated, it cannot be stopped -- it will run until the configured number of packets have been sent. Once the sequence completes, the management station should retrieve the values of the status objects of interest, and should then delete the entry. In order to prevent old entries from clogging the table, entries will be aged out, but an entry will never be deleted within 5 minutes of completing." INDEX { ciscoPingSerialNumber } ::= { ciscoPingTable 1 } CiscoPingEntry ::= SEQUENCE { -- index ciscoPingSerialNumber Integer32, -- configuration items ciscoPingProtocol CiscoNetworkProtocol, ciscoPingAddress CiscoNetworkAddress, ciscoPingPacketCount Integer32, ciscoPingPacketSize Integer32, ciscoPingPacketTimeout Integer32, ciscoPingDelay Integer32, ciscoPingTrapOnCompletion TruthValue, -- status items ciscoPingSentPackets Counter32, ciscoPingReceivedPackets Counter32, ciscoPingMinRtt Integer32, ciscoPingAvgRtt Integer32, ciscoPingMaxRtt Integer32, ciscoPingCompleted TruthValue, ciscoPingEntryOwner OwnerString, ciscoPingEntryStatus RowStatus } ciscoPingSerialNumber OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "Object which specifies a unique entry in the ciscoPingTable. A management station wishing to initiate a ping operation should use a pseudo-random value for this object when creating or modifying an instance of a ciscoPingEntry. The RowStatus semantics of the ciscoPingEntryStatus object will prevent access conflicts." ::= { ciscoPingEntry 1 } ciscoPingProtocol OBJECT-TYPE SYNTAX CiscoNetworkProtocol MAX-ACCESS read-create STATUS current DESCRIPTION "The protocol to use. Once an instance of this object is created, its value can not be changed." ::= { ciscoPingEntry 2 } ciscoPingAddress OBJECT-TYPE SYNTAX CiscoNetworkAddress MAX-ACCESS read-create STATUS current DESCRIPTION "The address of the device to be pinged. An instance of this object cannot be created until the associated instance of ciscoPingProtocol is created. Once an instance of this object is created, its value can not be changed." ::= { ciscoPingEntry 3 } ciscoPingPacketCount OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS read-create STATUS current DESCRIPTION "Specifies the number of ping packets to send to the target in this sequence." DEFVAL { 5 } ::= { ciscoPingEntry 4 } ciscoPingPacketSize OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-create STATUS current DESCRIPTION "Specifies the size of ping packets to send to the target in this sequence. The lower and upper boundaries of this object are protocol-dependent. An instance of this object cannot be modified unless the associated instance of ciscoPingProtocol has been created (so as to allow protocol-specific range checking on the new value)." DEFVAL { 100 } ::= { ciscoPingEntry 5 } ciscoPingPacketTimeout OBJECT-TYPE SYNTAX INTEGER (0..3600000) UNITS "milliseconds" MAX-ACCESS read-create STATUS current DESCRIPTION "Specifies the amount of time to wait for a response to a transmitted packet before declaring the packet 'dropped.'" DEFVAL { 2000 } ::= { ciscoPingEntry 6 } ciscoPingDelay OBJECT-TYPE SYNTAX INTEGER (0..3600000) UNITS "milliseconds" MAX-ACCESS read-create STATUS current DESCRIPTION "Specifies the minimum amount of time to wait before sending the next packet in a sequence after receiving a response or declaring a timeout for a previous packet. The actual delay may be greater due to internal task scheduling." DEFVAL { 0 } ::= { ciscoPingEntry 7 } ciscoPingTrapOnCompletion OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-create STATUS current DESCRIPTION "Specifies whether or not a ciscoPingCompletion trap should be issued on completion of the sequence of pings. If such a trap is desired, it is the responsibility of the management entity to ensure that the SNMP administrative model is configured in such a way as to allow the trap to be delivered." DEFVAL { false } ::= { ciscoPingEntry 8 } ciscoPingSentPackets OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of ping packets that have been sent to the target in this sequence." ::= { ciscoPingEntry 9 } ciscoPingReceivedPackets OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of ping packets that have been received from the target in this sequence." ::= { ciscoPingEntry 10 } ciscoPingMinRtt OBJECT-TYPE SYNTAX Integer32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum round trip time of all the packets that have been sent in this sequence. This object will not be created until the first ping response in a sequence is received." ::= { ciscoPingEntry 11 } ciscoPingAvgRtt OBJECT-TYPE SYNTAX Integer32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The average round trip time of all the packets that have been sent in this sequence. This object will not be created until the first ping response in a sequence is received." ::= { ciscoPingEntry 12 } ciscoPingMaxRtt OBJECT-TYPE SYNTAX Integer32 UNITS "milliseconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum round trip time of all the packets that have been sent in this sequence. This object will not be created until the first ping response in a sequence is received." ::= { ciscoPingEntry 13 } ciscoPingCompleted OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "Set to true when all the packets in this sequence have been either responded to or timed out." ::= { ciscoPingEntry 14 } ciscoPingEntryOwner OBJECT-TYPE SYNTAX OwnerString MAX-ACCESS read-create STATUS current DESCRIPTION "The entity that configured this entry." ::= { ciscoPingEntry 15 } ciscoPingEntryStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this table entry. Once the entry status is set to active, the associate entry cannot be modified until the sequence completes (ciscoPingCompleted is true)." ::= { ciscoPingEntry 16 } ciscoPingMIBTrapPrefix OBJECT IDENTIFIER ::= { ciscoPingMIB 2 } ciscoPingMIBTraps OBJECT IDENTIFIER ::= { ciscoPingMIBTrapPrefix 0 } ciscoPingCompletion NOTIFICATION-TYPE OBJECTS { ciscoPingCompleted, ciscoPingSentPackets, ciscoPingReceivedPackets } STATUS current DESCRIPTION "A ciscoPingCompleted trap is sent at the completion of a sequence of pings if such a trap was requested when the sequence was initiated. In addition to the above listed objects (which are always present), the message will also contain the following objects if any responses were received: ciscoPingMinRtt ciscoPingAvgRtt ciscoPingMaxRtt" ::= { ciscoPingMIBTraps 1 } -- conformance information ciscoPingMIBConformance OBJECT IDENTIFIER ::= { ciscoPingMIB 3 } ciscoPingMIBCompliances OBJECT IDENTIFIER ::= { ciscoPingMIBConformance 1 } ciscoPingMIBGroups OBJECT IDENTIFIER ::= { ciscoPingMIBConformance 2 } -- compliance statements ciscoPingMIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for entities which implement the Cisco Ping MIB" MODULE -- this module MANDATORY-GROUPS { ciscoPingMIBGroup } ::= { ciscoPingMIBCompliances 1 } -- units of conformance ciscoPingMIBGroup OBJECT-GROUP OBJECTS { ciscoPingProtocol, ciscoPingAddress, ciscoPingPacketCount, ciscoPingPacketSize, ciscoPingPacketTimeout, ciscoPingDelay, ciscoPingTrapOnCompletion, ciscoPingSentPackets, ciscoPingReceivedPackets, ciscoPingMinRtt, ciscoPingAvgRtt, ciscoPingMaxRtt, ciscoPingCompleted, ciscoPingEntryOwner, ciscoPingEntryStatus } STATUS current DESCRIPTION "A collection of objects providing ping (echo) ability to a Cisco agent." ::= { ciscoPingMIBGroups 1 } END GNOME-SMI DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-IDENTITY, enterprises FROM SNMPv2-SMI; gnome MODULE-IDENTITY LAST-UPDATED "9809010000Z" ORGANIZATION "GNOME project" CONTACT-INFO "GNU Network Object Model Environment project email: snmp@gnome.org" DESCRIPTION "The Structure of GNOME." ::= { enterprises 3317 } -- assigned by IANA gnomeProducts OBJECT-IDENTITY STATUS current DESCRIPTION "gnomeProducts is the root OBJECT IDENTIFIER from which sysObjectID values are assigned. Actual values are defined in GNOME-PRODUCTS-MIB." ::= { gnome 1 } gxsnmp OBJECT-IDENTITY STATUS current DESCRIPTION "gxsnmp is a basic SNMP management application that allows you to better manage your network. Actual values are defined in GNOME-GXSNMP-MIB." ::= { gnome 2 } END SNMP-TARGET-MIB DEFINITIONS ::= BEGIN IMPORTS TEXTUAL-CONVENTION, MODULE-IDENTITY, OBJECT-TYPE, snmpModules, Integer32 FROM SNMPv2-SMI TDomain, TAddress, TimeInterval, RowStatus, StorageType, TestAndIncr FROM SNMPv2-TC SnmpSecurityModel, SnmpMessageProcessingModel, SnmpSecurityLevel, SnmpAdminString FROM SNMP-FRAMEWORK-MIB OBJECT-GROUP FROM SNMPv2-CONF; snmpTargetMIB MODULE-IDENTITY LAST-UPDATED "9711210000Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems Postal: 3060 Washington Rd Glenwood MD 21738 USA Email: mundy@tis.com Phone: +1-301-854-6889 Co-editor: David B. Levi SNMP Research, Inc. Postal: 3001 Kimberlin Heights Road Knoxville, TN 37920-9716 E-mail: levi@snmp.com Phone: +1 423 573 1434 Co-editor: Paul Meyer Secure Computing Corporation Postal: 2675 Long Lake Road Roseville, MN 55113 E-mail: paul_meyer@securecomputing.com Phone: +1 612 628 1592 Co-editor: Bob Stewart Cisco Systems, Inc. Postal: 170 West Tasman Drive San Jose, CA 95134-1706 E-mail: bstewart@cisco.com Phone: +1 603 654 6923" DESCRIPTION "This MIB module defines MIB objects which provide mechanisms to remotely configure the parameters used by an SNMP entity for the generation of SNMP messages." REVISION "9707140000Z" DESCRIPTION "The initial revision." ::= { snmpModules 12 } snmpTargetObjects OBJECT IDENTIFIER ::= { snmpTargetMIB 1 } snmpTargetConformance OBJECT IDENTIFIER ::= { snmpTargetMIB 3 } SnmpTagValue ::= TEXTUAL-CONVENTION DISPLAY-HINT "255a" STATUS current DESCRIPTION "An octet string containing a tag value. Tag values are preferably in human-readable form. To facilitate internationalization, this information is represented using the ISO/IEC IS 10646-1 character set, encoded as an octet string using the UTF-8 character encoding scheme described in RFC 2044. Since additional code points are added by amendments to the 10646 standard from time to time, implementations must be prepared to encounter any code point from 0x00000000 to 0x7fffffff. The use of control codes should be avoided, and certain control codes are not allowed as described below. For code points not directly supported by user interface hardware or software, an alternative means of entry and display, such as hexadecimal, may be provided. For information encoded in 7-bit US-ASCII, the UTF-8 representation is identical to the US-ASCII encoding. Note that when this TC is used for an object that is used or envisioned to be used as an index, then a SIZE restriction must be specified so that the number sub-identifiers for any object instance do not exceed the limit of 128, as defined by [RFC1905]. An object of this type contains a single tag value which is used to select a set of entries in a table. A tag value is an arbitrary string of octets, but may not contain a delimiter character. Delimiter characters are defined to be one of the following: - An ASCII space character (0x20). - An ASCII TAB character (0x09). - An ASCII carriage return (CR) character (0x0D). - An ASCII line feed (LF) character (0x0B). Delimiter characters are used to separate tag values in a tag list. An object of this type may only contain a single tag value, and so delimiter characters are not allowed in a value of this type. Some examples of valid tag values are: - 'acme' - 'router' - 'host' The use of a tag value to select table entries is application and MIB specific." SYNTAX OCTET STRING (SIZE (0..255)) SnmpTagList ::= TEXTUAL-CONVENTION DISPLAY-HINT "255a" STATUS current DESCRIPTION "An octet string containing a list of tag values. Tag values are preferably in human-readable form. To facilitate internationalization, this information is represented using the ISO/IEC IS 10646-1 character set, encoded as an octet string using the UTF-8 character encoding scheme described in RFC 2044. Since additional code points are added by amendments to the 10646 standard from time to time, implementations must be prepared to encounter any code point from 0x00000000 to 0x7fffffff. The use of control codes should be avoided, except as described below. For code points not directly supported by user interface hardware or software, an alternative means of entry and display, such as hexadecimal, may be provided. For information encoded in 7-bit US-ASCII, the UTF-8 representation is identical to the US-ASCII encoding. An object of this type contains a list of tag values which are used to select a set of entries in a table. A tag value is an arbitrary string of octets, but may not contain a delimiter character. Delimiter characters are defined to be one of the following: - An ASCII space character (0x20). - An ASCII TAB character (0x09). - An ASCII carriage return (CR) character (0x0D). - An ASCII line feed (LF) character (0x0B). Delimiter characters are used to separate tag values in a tag list. Only a single delimiter character may occur between two tag values. A tag value may not have a zero length. These constraints imply certain restrictions on the contents of this object: - There cannot be a leading or trailing delimiter character. - There cannot be multiple adjacent delimiter characters. Some examples of valid tag lists are: - An empty string - 'acme router' - 'host managerStation' Note that although a tag value may not have a length of zero, an empty string is still valid. This indicates an empty list (i.e. there are no tag values in the list). The use of the tag list to select table entries is application and MIB specific. Typically, an application will provide one or more tag values, and any entry which contains some combination of these tag values will be selected." SYNTAX OCTET STRING (SIZE (0..255)) -- -- -- The snmpTargetObjects group -- -- snmpTargetSpinLock OBJECT-TYPE SYNTAX TestAndIncr MAX-ACCESS read-write STATUS current DESCRIPTION "This object is used to facilitate modification of table entries in the SNMP-TARGET-MIB module by multiple managers. In particular, it is useful when modifying the value of the snmpTargetAddrTagList object. The procedure for modifying the snmpTargetAddrTagList object is as follows: 1. Retrieve the value of snmpTargetSpinLock and of snmpTargetAddrTagList. 2. Generate a new value for snmpTargetAddrTagList. 3. Set the value of snmpTargetSpinLock to the retrieved value, and the value of snmpTargetAddrTagList to the new value. If the set fails for the snmpTargetSpinLock object, go back to step 1." ::= { snmpTargetObjects 1 } snmpTargetAddrTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpTargetAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table of transport addresses to be used in the generation of SNMP messages." ::= { snmpTargetObjects 2 } snmpTargetAddrEntry OBJECT-TYPE SYNTAX SnmpTargetAddrEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A transport address to be used in the generation of SNMP operations. Entries in the snmpTargetAddrTable are created and deleted using the snmpTargetAddrRowStatus object." INDEX { IMPLIED snmpTargetAddrName } ::= { snmpTargetAddrTable 1 } SnmpTargetAddrEntry ::= SEQUENCE { snmpTargetAddrName SnmpAdminString, snmpTargetAddrTDomain TDomain, snmpTargetAddrTAddress TAddress, snmpTargetAddrTimeout TimeInterval, snmpTargetAddrRetryCount Integer32, snmpTargetAddrTagList SnmpTagList, snmpTargetAddrParams SnmpAdminString, snmpTargetAddrStorageType StorageType, snmpTargetAddrRowStatus RowStatus } snmpTargetAddrName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpTargetAddrEntry." ::= { snmpTargetAddrEntry 1 } snmpTargetAddrTDomain OBJECT-TYPE SYNTAX TDomain MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates the transport type of the address contained in the snmpTargetAddrTAddress object." ::= { snmpTargetAddrEntry 2 } snmpTargetAddrTAddress OBJECT-TYPE SYNTAX TAddress MAX-ACCESS read-create STATUS current DESCRIPTION "This object contains a transport address. The format of this address depends on the value of the snmpTargetAddrTDomain object." ::= { snmpTargetAddrEntry 3 } snmpTargetAddrTimeout OBJECT-TYPE SYNTAX TimeInterval MAX-ACCESS read-create STATUS current DESCRIPTION "This object should reflect the expected maximum round trip time for communicating with the transport address defined by this row. When a message is sent to this address, and a response (if one is expected) is not received within this time period, an implementation may assume that the response will not be delivered. Note that the time interval that an application waits for a response may actually be derived from the value of this object. The method for deriving the actual time interval is implementation dependent. One such method is to derive the expected round trip time based on a particular retransmission algorithm and on the number of timeouts which have occurred. The type of message may also be considered when deriving expected round trip times for retransmissions. For example, if a message is being sent with a securityLevel that indicates both authentication and privacy, the derived value may be increased to compensate for extra processing time spent during authentication and encryption processing." DEFVAL { 1500 } ::= { snmpTargetAddrEntry 4 } snmpTargetAddrRetryCount OBJECT-TYPE SYNTAX INTEGER (0..255) MAX-ACCESS read-create STATUS current DESCRIPTION "This object specifies a default number of retries to be attempted when a response is not received for a generated message. An application may provide its own retry count, in which case the value of this object is ignored." DEFVAL { 3 } ::= { snmpTargetAddrEntry 5 } snmpTargetAddrTagList OBJECT-TYPE SYNTAX SnmpTagList MAX-ACCESS read-create STATUS current DESCRIPTION "This object contains a list of tag values which are used to select target addresses for a particular operation." ::= { snmpTargetAddrEntry 6 } snmpTargetAddrParams OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object identifies an entry in the snmpTargetParamsTable. The identified entry contains SNMP parameters to be used when generating messages to be sent to this transport address." ::= { snmpTargetAddrEntry 7 } snmpTargetAddrStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row." ::= { snmpTargetAddrEntry 8 } snmpTargetAddrRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the snmpTargetAddrRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding snmpTargetAddrTDomain and snmpTargetAddrTAddress have both been set. The following objects may not be modified while the value of this object is active(1): - snmpTargetAddrTDomain - snmpTargetAddrTAddress" ::= { snmpTargetAddrEntry 9 } snmpTargetParamsTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpTargetParamsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A table of SNMP target information to be used in the generation of SNMP messages." ::= { snmpTargetObjects 3 } snmpTargetParamsEntry OBJECT-TYPE SYNTAX SnmpTargetParamsEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of SNMP target information. Entries in the snmpTargetParamsTable are created and deleted using the snmpTargetParamsRowStatus object." INDEX { IMPLIED snmpTargetParamsName } ::= { snmpTargetParamsTable 1 } SnmpTargetParamsEntry ::= SEQUENCE { snmpTargetParamsName SnmpAdminString, snmpTargetParamsMPModel SnmpMessageProcessingModel, snmpTargetParamsSecurityModel SnmpSecurityModel, snmpTargetParamsSecurityName SnmpAdminString, snmpTargetParamsSecurityLevel SnmpSecurityLevel, snmpTargetParamsStorageType StorageType, snmpTargetParamsRowStatus RowStatus } snmpTargetParamsName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpTargetParamsEntry." ::= { snmpTargetParamsEntry 1 } snmpTargetParamsMPModel OBJECT-TYPE SYNTAX SnmpMessageProcessingModel MAX-ACCESS read-create STATUS current DESCRIPTION "The Message Processing Model to be used when generating SNMP messages using this entry." ::= { snmpTargetParamsEntry 2 } snmpTargetParamsSecurityModel OBJECT-TYPE SYNTAX INTEGER (0..2147483647) MAX-ACCESS read-create STATUS current DESCRIPTION "The Security Model to be used when generating SNMP messages using this entry." ::= { snmpTargetParamsEntry 3 } snmpTargetParamsSecurityName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "The securityName which identifies the Principal on whose behalf SNMP messages will be generated using this entry." ::= { snmpTargetParamsEntry 4 } snmpTargetParamsSecurityLevel OBJECT-TYPE SYNTAX SnmpSecurityLevel MAX-ACCESS read-create STATUS current DESCRIPTION "The Level of Security to be used when generating SNMP messages using this entry." ::= { snmpTargetParamsEntry 5 } snmpTargetParamsStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row." ::= { snmpTargetParamsEntry 6 } snmpTargetParamsRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the snmpTargetParamsRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding snmpTargetParamsMPModel, snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, and snmpTargetParamsSecurityLevel have all been set. The following objects may not be modified while the value of this object is active(1): - snmpTargetParamsMPModel - snmpTargetParamsSecurityModel - snmpTargetParamsSecurityName - snmpTargetParamsSecurityLevel" ::= { snmpTargetParamsEntry 7 } snmpUnavailableContexts OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because the context contained in the mesage was unavailable." ::= { snmpTargetObjects 4 } snmpUnknownContexts OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because the context contained in the mesage was unknown." ::= { snmpTargetObjects 5 } -- -- -- Conformance information -- -- snmpTargetCompliances OBJECT IDENTIFIER ::= { snmpTargetConformance 1 } snmpTargetGroups OBJECT IDENTIFIER ::= { snmpTargetConformance 2 } -- -- -- Compliance statements -- -- snmpTargetCommandResponderCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which include a command responder application." MODULE -- This Module MANDATORY-GROUPS { snmpTargetCommandResponderGroup } ::= { snmpTargetCompliances 1 } snmpTargetBasicGroup OBJECT-GROUP OBJECTS { snmpTargetSpinLock, snmpTargetAddrTDomain, snmpTargetAddrTAddress, snmpTargetAddrTagList, snmpTargetAddrParams, snmpTargetAddrStorageType, snmpTargetAddrRowStatus, snmpTargetParamsMPModel, snmpTargetParamsSecurityModel, snmpTargetParamsSecurityName, snmpTargetParamsSecurityLevel, snmpTargetParamsStorageType, snmpTargetParamsRowStatus } STATUS current DESCRIPTION "A collection of objects providing basic remote configuration of management targets." ::= { snmpTargetGroups 1 } snmpTargetResponseGroup OBJECT-GROUP OBJECTS { snmpTargetAddrTimeout, snmpTargetAddrRetryCount } STATUS current DESCRIPTION "A collection of objects providing remote configuration of management targets for applications which generate SNMP messages for which a response message would be expected." ::= { snmpTargetGroups 2 } snmpTargetCommandResponderGroup OBJECT-GROUP OBJECTS { snmpUnavailableContexts, snmpUnknownContexts } STATUS current DESCRIPTION "A collection of objects required for command responder applications, used for counting error conditions." ::= { snmpTargetGroups 3 } END SNMP-VIEW-BASED-ACM-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF MODULE-IDENTITY, OBJECT-TYPE, snmpModules FROM SNMPv2-SMI TestAndIncr, RowStatus, StorageType FROM SNMPv2-TC SnmpAdminString, SnmpSecurityLevel, SnmpSecurityModel FROM SNMP-FRAMEWORK-MIB; snmpVacmMIB MODULE-IDENTITY LAST-UPDATED "9711200000Z" -- 20 Nov 1997, midnight ORGANIZATION "SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems postal: 3060 Washington Rd Glenwood MD 21738 USA email: mundy@tis.com phone: +1-301-854-6889 Co-editor: Bert Wijnen IBM T.J. Watson Research postal: Schagen 33 3461 GL Linschoten Netherlands email: wijnen@vnet.ibm.com phone: +31-348-432-794 Co-editor: Randy Presuhn BMC Software, Inc postal: 1190 Saratoga Avenue, Suite 130 San Jose, CA 95129-3433 USA email: rpresuhn@bmc.com phone: +1-408-556-0720 Co-editor: Keith McCloghrie Cisco Systems, Inc. postal: 170 West Tasman Drive San Jose, CA 95134-1706 USA email: kzm@cisco.com phone: +1-408-526-5260 " DESCRIPTION "The management information definitions for the View-based Access Control Model for SNMP. " ::= { snmpModules 16 } -- Administrative assignments **************************************** vacmMIBObjects OBJECT IDENTIFIER ::= { snmpVacmMIB 1 } vacmMIBConformance OBJECT IDENTIFIER ::= { snmpVacmMIB 2 } -- Information about Local Contexts ********************************** vacmContextTable OBJECT-TYPE SYNTAX SEQUENCE OF VacmContextEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of locally available contexts. This table provides information to SNMP Command Generator applications so that they can properly configure the vacmAccessTable to control access to all contexts at the SNMP entity. This table may change dynamically if the SNMP entity allows that contexts are added/deleted dynamically (for instance when its configuration changes). Such changes would happen only if the management instrumentation at that SNMP entity recognizes more (or fewer) contexts. The presence of entries in this table and of entries in the vacmAccessTable are independent. That is, a context identified by an entry in this table is not necessarily referenced by any entries in the vacmAccessTable; and the context(s) referenced by an entry in the vacmAccessTable does not necessarily currently exist and thus need not be identified by an entry in this table. This table must be made accessible via the default context so that Command Responder applications have a standard way of retrieving the information. This table is read-only. It cannot be configured via SNMP. " ::= { vacmMIBObjects 1 } vacmContextEntry OBJECT-TYPE SYNTAX VacmContextEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a particular context." INDEX { vacmContextName } ::= { vacmContextTable 1 } VacmContextEntry ::= SEQUENCE { vacmContextName SnmpAdminString } vacmContextName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..32)) MAX-ACCESS read-only STATUS current DESCRIPTION "A human readable name identifying a particular context at a particular SNMP entity. The empty contextName (zero length) represents the default context. " ::= { vacmContextEntry 1 } -- Information about Groups ****************************************** vacmSecurityToGroupTable OBJECT-TYPE SYNTAX SEQUENCE OF VacmSecurityToGroupEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table maps a combination of securityModel and securityName into a groupName which is used to define an access control policy for a group of principals. " ::= { vacmMIBObjects 2 } vacmSecurityToGroupEntry OBJECT-TYPE SYNTAX VacmSecurityToGroupEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table maps the combination of a securityModel and securityName into a groupName. " INDEX { vacmSecurityModel, vacmSecurityName } ::= { vacmSecurityToGroupTable 1 } VacmSecurityToGroupEntry ::= SEQUENCE { vacmSecurityModel SnmpSecurityModel, vacmSecurityName SnmpAdminString, vacmGroupName SnmpAdminString, vacmSecurityToGroupStorageType StorageType, vacmSecurityToGroupStatus RowStatus } vacmSecurityModel OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Security Model, by which the vacmSecurityName referenced by this entry is provided. Note, this object may not take the 'any' (0) value. " ::= { vacmSecurityToGroupEntry 1 } vacmSecurityName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The securityName for the principal, represented in a Security Model independent format, which is mapped by this entry to a groupName. The securityName for a principal represented in a Security Model independent format. " ::= { vacmSecurityToGroupEntry 2 } vacmGroupName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The name of the group to which this entry (e.g., the combination of securityModel and securityName) belongs. This groupName is used as index into the vacmAccessTable to select an access control policy. " ::= { vacmSecurityToGroupEntry 3 } vacmSecurityToGroupStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row. Conceptual rows having the value 'permanent' need not allow write-access to any columnar objects in the row. " DEFVAL { nonVolatile } ::= { vacmSecurityToGroupEntry 4 } vacmSecurityToGroupStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. The RowStatus TC [RFC1903] requires that this DESCRIPTION clause states under which circumstances other objects in this row can be modified: The value of this object has no effect on whether other objects in this conceptual row can be modified. " ::= { vacmSecurityToGroupEntry 5 } -- Information about Access Rights *********************************** vacmAccessTable OBJECT-TYPE SYNTAX SEQUENCE OF VacmAccessEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of access rights for groups. Each entry is indexed by a contextPrefix, a groupName a securityModel and a securityLevel. To determine whether access is allowed, one entry from this table needs to be selected and the proper viewName from that entry must be used for access control checking. To select the proper entry, follow these steps: 1) the set of possible matches is formed by the intersection of the following sets of entries: the set of entries with identical vacmGroupName the union of these two sets: - the set with identical vacmAccessContextPrefix - the set of entries with vacmAccessContextMatch value of 'prefix' and matching vacmAccessContextPrefix intersected with the union of these two sets: - the set of entries with identical vacmSecurityModel - the set of entries with vacmSecurityModel value of 'any' intersected with the set of entries with vacmAccessSecurityLevel value less than or equal to the requested securityLevel 2) if this set has only one member, we're done otherwise, it comes down to deciding how to weight the preferences between ContextPrefixes, SecurityModels, and SecurityLevels as follows: a) if the subset of entries with identical securityModels is not empty, discard the rest. b) if the subset of entries with identical vacmAccessContextPrefix is not empty, discard the rest c) discard all entries with ContextPrefixes shorter than the longest one remaining in the set d) select the entry with the highest securityLevel Please note that for securityLevel noAuthNoPriv, all groups are really equivalent since the assumption that the securityName has been authenticated does not hold. " ::= { vacmMIBObjects 4 } vacmAccessEntry OBJECT-TYPE SYNTAX VacmAccessEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An access right configured in the Local Configuration Datastore (LCD) authorizing access to an SNMP context. " INDEX { vacmGroupName, vacmAccessContextPrefix, vacmAccessSecurityModel, vacmAccessSecurityLevel } ::= { vacmAccessTable 1 } VacmAccessEntry ::= SEQUENCE { vacmAccessContextPrefix SnmpAdminString, vacmAccessSecurityModel SnmpSecurityModel, vacmAccessSecurityLevel SnmpSecurityLevel, vacmAccessContextMatch INTEGER, vacmAccessReadViewName SnmpAdminString, vacmAccessWriteViewName SnmpAdminString, vacmAccessNotifyViewName SnmpAdminString, vacmAccessStorageType StorageType, vacmAccessStatus RowStatus } vacmAccessContextPrefix OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "In order to gain the access rights allowed by this conceptual row, a contextName must match exactly (if the value of vacmAccessContextMatch is 'exact') or partially (if the value of vacmAccessContextMatch is 'prefix') to the value of the instance of this object. " ::= { vacmAccessEntry 1 } vacmAccessSecurityModel OBJECT-TYPE SYNTAX SnmpSecurityModel MAX-ACCESS not-accessible STATUS current DESCRIPTION "In order to gain the access rights allowed by this conceptual row, this securityModel must be in use. " ::= { vacmAccessEntry 2 } vacmAccessSecurityLevel OBJECT-TYPE SYNTAX SnmpSecurityLevel MAX-ACCESS not-accessible STATUS current DESCRIPTION "The minimum level of security required in order to gain the access rights allowed by this conceptual row. A securityLevel of noAuthNoPriv is less than authNoPriv which in turn is less than authPriv. If multiple entries are equally indexed except for this vacmAccessSecurityLevel index, then the entry which has the highest value for vacmAccessSecurityLevel wins. " ::= { vacmAccessEntry 3 } vacmAccessContextMatch OBJECT-TYPE SYNTAX INTEGER { exact (1), -- exact match of prefix and contextName prefix (2) -- Only match to the prefix } MAX-ACCESS read-create STATUS current DESCRIPTION "If the value of this object is exact(1), then all rows where the contextName exactly matches vacmAccessContextPrefix are selected. If the value of this object is prefix(2), then all rows where the contextName whose starting octets exactly match vacmAccessContextPrefix are selected. This allows for a simple form of wildcarding. See also the example in the DESCRIPTION clause of the vacmAccessTable above. " ::= { vacmAccessEntry 4 } vacmAccessReadViewName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of an instance of this object identifies the MIB view of the SNMP context to which this conceptual row authorizes read access. The identified MIB view is that one for which the vacmViewTreeFamilyViewName has the same value as the instance of this object; if the value is the empty string or if there is no active MIB view having this value of vacmViewTreeFamilyViewName, then no access is granted. " DEFVAL { ''H } -- the empty string ::= { vacmAccessEntry 5 } vacmAccessWriteViewName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of an instance of this object identifies the MIB view of the SNMP context to which this conceptual row authorizes write access. The identified MIB view is that one for which the vacmViewTreeFamilyViewName has the same value as the instance of this object; if the value is the empty string or if there is no active MIB view having this value of vacmViewTreeFamilyViewName, then no access is granted. " DEFVAL { ''H } -- the empty string ::= { vacmAccessEntry 6 } vacmAccessNotifyViewName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The value of an instance of this object identifies the MIB view of the SNMP context to which this conceptual row authorizes access for notifications. The identified MIB view is that one for which the vacmViewTreeFamilyViewName has the same value as the instance of this object; if the value is the empty string or if there is no active MIB view having this value of vacmViewTreeFamilyViewName, then no access is granted. " DEFVAL { ''H } -- the empty string ::= { vacmAccessEntry 7 } vacmAccessStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row. Conceptual rows having the value 'permanent' need not allow write-access to any columnar objects in the row. " DEFVAL { nonVolatile } ::= { vacmAccessEntry 8 } vacmAccessStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. The RowStatus TC [RFC1903] requires that this DESCRIPTION clause states under which circumstances other objects in this row can be modified: The value of this object has no effect on whether other objects in this conceptual row can be modified. " ::= { vacmAccessEntry 9 } -- Information about MIB views *************************************** -- Support for instance-level granularity is optional. -- -- In some implementations, instance-level access control -- granularity may come at a high performance cost. Managers -- should avoid requesting such configurations unnecessarily. vacmMIBViews OBJECT IDENTIFIER ::= { vacmMIBObjects 5 } vacmViewSpinLock OBJECT-TYPE SYNTAX TestAndIncr MAX-ACCESS read-write STATUS current DESCRIPTION "An advisory lock used to allow cooperating SNMP Command Generator applications to coordinate their use of the Set operation in creating or modifying views. When creating a new view or altering an existing view, it is important to understand the potential interactions with other uses of the view. The vacmViewSpinLock should be retrieved. The name of the view to be created should be determined to be unique by the SNMP Command Generator application by consulting the vacmViewTreeFamilyTable. Finally, the named view may be created (Set), including the advisory lock. If another SNMP Command Generator application has altered the views in the meantime, then the spin lock's value will have changed, and so this creation will fail because it will specify the wrong value for the spin lock. Since this is an advisory lock, the use of this lock is not enforced. " ::= { vacmMIBViews 1 } vacmViewTreeFamilyTable OBJECT-TYPE SYNTAX SEQUENCE OF VacmViewTreeFamilyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Locally held information about families of subtrees within MIB views. Each MIB view is defined by two sets of view subtrees: - the included view subtrees, and - the excluded view subtrees. Every such view subtree, both the included and the excluded ones, is defined in this table. To determine if a particular object instance is in a particular MIB view, compare the object instance's OBJECT IDENTIFIER with each of the MIB view's active entries in this table. If none match, then the object instance is not in the MIB view. If one or more match, then the object instance is included in, or excluded from, the MIB view according to the value of vacmViewTreeFamilyType in the entry whose value of vacmViewTreeFamilySubtree has the most sub-identifiers. If multiple entries match and have the same number of sub-identifiers, then the lexicographically greatest instance of vacmViewTreeFamilyType determines the inclusion or exclusion. An object instance's OBJECT IDENTIFIER X matches an active entry in this table when the number of sub-identifiers in X is at least as many as in the value of vacmViewTreeFamilySubtree for the entry, and each sub-identifier in the value of vacmViewTreeFamilySubtree matches its corresponding sub-identifier in X. Two sub-identifiers match either if the corresponding bit of the value of vacmViewTreeFamilyMask for the entry is zero (the 'wild card' value), or if they are equal. A 'family' of subtrees is the set of subtrees defined by a particular combination of values of vacmViewTreeFamilySubtree and vacmViewTreeFamilyMask. In the case where no 'wild card' is defined in the vacmViewTreeFamilyMask, the family of subtrees reduces to a single subtree. When creating or changing MIB views, an SNMP Command Generator application should utilize the vacmViewSpinLock to try to avoid collisions. See DESCRIPTION clause of vacmViewSpinLock. When creating MIB views, it is strongly advised that first the 'excluded' vacmViewTreeFamilyEntries are created and then the 'included' entries. When deleting MIB views, it is strongly advised that first the 'included' vacmViewTreeFamilyEntries are deleted and then the 'excluded' entries. If a create for an entry for instance-level access control is received and the implementation does not support instance-level granularity, then an inconsistentName error must be returned. " ::= { vacmMIBViews 2 } vacmViewTreeFamilyEntry OBJECT-TYPE SYNTAX VacmViewTreeFamilyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information on a particular family of view subtrees included in or excluded from a particular SNMP context's MIB view. Implementations must not restrict the number of families of view subtrees for a given MIB view, except as dictated by resource constraints on the overall number of entries in the vacmViewTreeFamilyTable. If no conceptual rows exist in this table for a given MIB view (viewName), that view may be thought of as consisting of the empty set of view subtrees. " INDEX { vacmViewTreeFamilyViewName, vacmViewTreeFamilySubtree } ::= { vacmViewTreeFamilyTable 1 } VacmViewTreeFamilyEntry ::= SEQUENCE { vacmViewTreeFamilyViewName SnmpAdminString, vacmViewTreeFamilySubtree OBJECT IDENTIFIER, vacmViewTreeFamilyMask OCTET STRING, vacmViewTreeFamilyType INTEGER, vacmViewTreeFamilyStorageType StorageType, vacmViewTreeFamilyStatus RowStatus } vacmViewTreeFamilyViewName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The human readable name for a family of view subtrees. " ::= { vacmViewTreeFamilyEntry 1 } vacmViewTreeFamilySubtree OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS not-accessible STATUS current DESCRIPTION "The MIB subtree which when combined with the corresponding instance of vacmViewTreeFamilyMask defines a family of view subtrees. " ::= { vacmViewTreeFamilyEntry 2 } vacmViewTreeFamilyMask OBJECT-TYPE SYNTAX OCTET STRING (SIZE (0..16)) MAX-ACCESS read-create STATUS current DESCRIPTION "The bit mask which, in combination with the corresponding instance of vacmViewTreeFamilySubtree, defines a family of view subtrees. Each bit of this bit mask corresponds to a sub-identifier of vacmViewTreeFamilySubtree, with the most significant bit of the i-th octet of this octet string value (extended if necessary, see below) corresponding to the (8*i - 7)-th sub-identifier, and the least significant bit of the i-th octet of this octet string corresponding to the (8*i)-th sub-identifier, where i is in the range 1 through 16. Each bit of this bit mask specifies whether or not the corresponding sub-identifiers must match when determining if an OBJECT IDENTIFIER is in this family of view subtrees; a '1' indicates that an exact match must occur; a '0' indicates 'wild card', i.e., any sub-identifier value matches. Thus, the OBJECT IDENTIFIER X of an object instance is contained in a family of view subtrees if, for each sub-identifier of the value of vacmViewTreeFamilySubtree, either: the i-th bit of vacmViewTreeFamilyMask is 0, or the i-th sub-identifier of X is equal to the i-th sub-identifier of the value of vacmViewTreeFamilySubtree. If the value of this bit mask is M bits long and there are more than M sub-identifiers in the corresponding instance of vacmViewTreeFamilySubtree, then the bit mask is extended with 1's to be the required length. Note that when the value of this object is the zero-length string, this extension rule results in a mask of all-1's being used (i.e., no 'wild card'), and the family of view subtrees is the one view subtree uniquely identified by the corresponding instance of vacmViewTreeFamilySubtree. Note that masks of length greater than zero length do not need to be supported. In this case this object is made read-only. " DEFVAL { ''H } ::= { vacmViewTreeFamilyEntry 3 } vacmViewTreeFamilyType OBJECT-TYPE SYNTAX INTEGER { included(1), excluded(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "Indicates whether the corresponding instances of vacmViewTreeFamilySubtree and vacmViewTreeFamilyMask define a family of view subtrees which is included in or excluded from the MIB view. " DEFVAL { included } ::= { vacmViewTreeFamilyEntry 4 } vacmViewTreeFamilyStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row. Conceptual rows having the value 'permanent' need not allow write-access to any columnar objects in the row. " DEFVAL { nonVolatile } ::= { vacmViewTreeFamilyEntry 5 } vacmViewTreeFamilyStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. The RowStatus TC [RFC1903] requires that this DESCRIPTION clause states under which circumstances other objects in this row can be modified: The value of this object has no effect on whether other objects in this conceptual row can be modified. " ::= { vacmViewTreeFamilyEntry 6 } -- Conformance information ******************************************* vacmMIBCompliances OBJECT IDENTIFIER ::= { vacmMIBConformance 1 } vacmMIBGroups OBJECT IDENTIFIER ::= { vacmMIBConformance 2 } -- Compliance statements ********************************************* vacmMIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP engines which implement the SNMP View-based Access Control Model configuration MIB. " MODULE -- this module MANDATORY-GROUPS { vacmBasicGroup } OBJECT vacmAccessContextMatch MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmAccessReadViewName MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmAccessWriteViewName MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmAccessNotifyViewName MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmAccessStorageType MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmAccessStatus MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access to the vacmAccessTable is not required. " OBJECT vacmViewTreeFamilyMask WRITE-SYNTAX OCTET STRING (SIZE (0)) MIN-ACCESS read-only DESCRIPTION "Support for configuration via SNMP of subtree families using wild-cards is not required. " OBJECT vacmViewTreeFamilyType MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmViewTreeFamilyStorageType MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT vacmViewTreeFamilyStatus MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access to the vacmViewTreeFamilyTable is not required. " ::= { vacmMIBCompliances 1 } -- Units of conformance ********************************************** vacmBasicGroup OBJECT-GROUP OBJECTS { vacmContextName, vacmGroupName, vacmSecurityToGroupStorageType, vacmSecurityToGroupStatus, vacmAccessContextMatch, vacmAccessReadViewName, vacmAccessWriteViewName, vacmAccessNotifyViewName, vacmAccessStorageType, vacmAccessStatus, vacmViewSpinLock, vacmViewTreeFamilyMask, vacmViewTreeFamilyType, vacmViewTreeFamilyStorageType, vacmViewTreeFamilyStatus } STATUS current DESCRIPTION "A collection of objects providing for remote configuration of an SNMP engine which implements the SNMP View-based Access Control Model. " ::= { vacmMIBGroups 1 } END SNMP-USER-BASED-SM-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY, snmpModules, Counter32 FROM SNMPv2-SMI TEXTUAL-CONVENTION, TestAndIncr, RowStatus, RowPointer, StorageType, AutonomousType FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF SnmpAdminString, SnmpEngineID, snmpAuthProtocols, snmpPrivProtocols FROM SNMP-FRAMEWORK-MIB; snmpUsmMIB MODULE-IDENTITY LAST-UPDATED "9711200000Z" -- 20 Nov 1997, midnight ORGANIZATION "SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In msg body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems postal: 3060 Washington Rd Glenwood MD 21738 USA email: mundy@tis.com phone: +1-301-854-6889 Co-editor Uri Blumenthal IBM T. J. Watson Research postal: 30 Saw Mill River Pkwy, Hawthorne, NY 10532 USA email: uri@watson.ibm.com phone: +1-914-784-7964 Co-editor: Bert Wijnen IBM T. J. Watson Research postal: Schagen 33 3461 GL Linschoten Netherlands email: wijnen@vnet.ibm.com phone: +31-348-432-794 " DESCRIPTION "The management information definitions for the SNMP User-based Security Model. " ::= { snmpModules 15 } -- Administrative assignments **************************************** usmMIBObjects OBJECT IDENTIFIER ::= { snmpUsmMIB 1 } usmMIBConformance OBJECT IDENTIFIER ::= { snmpUsmMIB 2 } -- Identification of Authentication and Privacy Protocols ************ usmNoAuthProtocol OBJECT-IDENTITY STATUS current DESCRIPTION "No Authentication Protocol." ::= { snmpAuthProtocols 1 } usmHMACMD5AuthProtocol OBJECT-IDENTITY STATUS current DESCRIPTION "The HMAC-MD5-96 Digest Authentication Protocol." REFERENCE "- H. Krawczyk, M. Bellare, R. Canetti HMAC: Keyed-Hashing for Message Authentication, RFC2104, Feb 1997. - Rivest, R., Message Digest Algorithm MD5, RFC1321. " ::= { snmpAuthProtocols 2 } usmHMACSHAAuthProtocol OBJECT-IDENTITY STATUS current DESCRIPTION "The HMAC-SHA-96 Digest Authentication Protocol." REFERENCE "- H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authentication, RFC2104, Feb 1997. - Secure Hash Algorithm. NIST FIPS 180-1. " ::= { snmpAuthProtocols 3 } usmNoPrivProtocol OBJECT-IDENTITY STATUS current DESCRIPTION "No Privacy Protocol." ::= { snmpPrivProtocols 1 } usmDESPrivProtocol OBJECT-IDENTITY STATUS current DESCRIPTION "The CBC-DES Symmetric Encryption Protocol." REFERENCE "- Data Encryption Standard, National Institute of Standards and Technology. Federal Information Processing Standard (FIPS) Publication 46-1. Supersedes FIPS Publication 46, (January, 1977; reaffirmed January, 1988). - Data Encryption Algorithm, American National Standards Institute. ANSI X3.92-1981, (December, 1980). - DES Modes of Operation, National Institute of Standards and Technology. Federal Information Processing Standard (FIPS) Publication 81, (December, 1980). - Data Encryption Algorithm - Modes of Operation, American National Standards Institute. ANSI X3.106-1983, (May 1983). " ::= { snmpPrivProtocols 2 } -- Textual Conventions *********************************************** KeyChange ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Every definition of an object with this syntax must identify a protocol P, a secret key K, and a hash algorithm H that produces output of L octets. The object's value is a manager-generated, partially-random value which, when modified, causes the value of the secret key K, to be modified via a one-way function. The value of an instance of this object is the concatenation of two components: first a 'random' component and then a 'delta' component. The lengths of the random and delta components are given by the corresponding value of the protocol P; if P requires K to be a fixed length, the length of both the random and delta components is that fixed length; if P allows the length of K to be variable up to a particular maximum length, the length of the random component is that maximum length and the length of the delta component is any length less than or equal to that maximum length. For example, usmHMACMD5AuthProtocol requires K to be a fixed length of 16 octets and L - of 16 octets. usmHMACSHAAuthProtocol requires K to be a fixed length of 20 octets and L - of 20 octets. Other protocols may define other sizes, as deemed appropriate. When a requestor wants to change the old key K to a new key keyNew on a remote entity, the 'random' component is obtained from either a true random generator, or from a pseudorandom generator, and the 'delta' component is computed as follows: - a temporary variable is initialized to the existing value of K; - if the length of the keyNew is greater than L octets, then: - the random component is appended to the value of the temporary variable, and the result is input to the the hash algorithm H to produce a digest value, and the temporary variable is set to this digest value; - the value of the temporary variable is XOR-ed with the first (next) L-octets (16 octets in case of MD5) of the keyNew to produce the first (next) L-octets (16 octets in case of MD5) of the 'delta' component. - the above two steps are repeated until the unused portion of the delta component is L octets or less, - the random component is appended to the value of the temporary variable, and the result is input to the hash algorithm H to produce a digest value; - this digest value, truncated if necessary to be the same length as the unused portion of the keyNew, is XOR-ed with the unused portion of the keyNew to produce the (final portion of the) 'delta' component. For example, using MD5 as the hash algorithm H: iterations = (lenOfDelta - 1)/16; /* integer division */ temp = keyOld; for (i = 0; i < iterations; i++) { temp = MD5 (temp || random); delta[i*16 .. (i*16)+15] = temp XOR keyNew[i*16 .. (i*16)+15]; } temp = MD5 (temp || random); delta[i*16 .. lenOfDelta-1] = temp XOR keyNew[i*16 .. lenOfDelta-1]; The 'random' and 'delta' components are then concatenated as described above, and the resulting octet string is sent to the receipient as the new value of an instance of this object. At the receiver side, when an instance of this object is set to a new value, then a new value of K is computed as follows: - a temporary variable is initialized to the existing value of K; - if the length of the delta component is greater than L octets, then: - the random component is appended to the value of the temporary variable, and the result is input to the the hash algorithm H to produce a digest value, and the temporary variable is set to this digest value; - the value of the temporary variable is XOR-ed with the first (next) L-octets (16 octets in case of MD5) of the delta component to produce the first (next) L-octets (16 octets in case of MD5) of the new value of K. - the above two steps are repeated until the unused portion of the delta component is L octets or less, - the random component is appended to the value of the temporary variable, and the result is input to the hash algorithm H to produce a digest value; - this digest value, truncated if necessary to be the same length as the unused portion of the delta component, is XOR-ed with the unused portion of the delta component to produce the (final portion of the) new value of K. For example, using MD5 as the hash algorithm H: iterations = (lenOfDelta - 1)/16; /* integer division */ temp = keyOld; for (i = 0; i < iterations; i++) { temp = MD5 (temp || random); keyNew[i*16 .. (i*16)+15] = temp XOR delta[i*16 .. (i*16)+15]; } temp = MD5 (temp || random); keyNew[i*16 .. lenOfDelta-1] = temp XOR delta[i*16 .. lenOfDelta-1]; The value of an object with this syntax, whenever it is retrieved by the management protocol, is always the zero length string. " SYNTAX OCTET STRING -- Statistics for the User-based Security Model ********************** usmStats OBJECT IDENTIFIER ::= { usmMIBObjects 1 } usmStatsUnsupportedSecLevels OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they requested a securityLevel that was unknown to the SNMP engine or otherwise unavailable. " ::= { usmStats 1 } usmStatsNotInTimeWindows OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they appeared outside of the authoritative SNMP engine's window. " ::= { usmStats 2 } usmStatsUnknownUserNames OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they referenced a user that was not known to the SNMP engine. " ::= { usmStats 3 } usmStatsUnknownEngineIDs OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they referenced an snmpEngineID that was not known to the SNMP engine. " ::= { usmStats 4 } usmStatsWrongDigests OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they didn't contain the expected digest value. " ::= { usmStats 5 } usmStatsDecryptionErrors OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they could not be decrypted. " ::= { usmStats 6 } -- The usmUser Group ************************************************ usmUser OBJECT IDENTIFIER ::= { usmMIBObjects 2 } usmUserSpinLock OBJECT-TYPE SYNTAX TestAndIncr MAX-ACCESS read-write STATUS current DESCRIPTION "An advisory lock used to allow several cooperating Command Generator Applications to coordinate their use of facilities to alter secrets in the usmUserTable. " ::= { usmUser 1 } -- The table of valid users for the User-based Security Model ******** usmUserTable OBJECT-TYPE SYNTAX SEQUENCE OF UsmUserEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of users configured in the SNMP engine's Local Configuration Datastore (LCD)." ::= { usmUser 2 } usmUserEntry OBJECT-TYPE SYNTAX UsmUserEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A user configured in the SNMP engine's Local Configuration Datastore (LCD) for the User-based Security Model. " INDEX { usmUserEngineID, usmUserName } ::= { usmUserTable 1 } UsmUserEntry ::= SEQUENCE { usmUserEngineID SnmpEngineID, usmUserName SnmpAdminString, usmUserSecurityName SnmpAdminString, usmUserCloneFrom RowPointer, usmUserAuthProtocol AutonomousType, usmUserAuthKeyChange KeyChange, usmUserOwnAuthKeyChange KeyChange, usmUserPrivProtocol AutonomousType, usmUserPrivKeyChange KeyChange, usmUserOwnPrivKeyChange KeyChange, usmUserPublic OCTET STRING, usmUserStorageType StorageType, usmUserStatus RowStatus } usmUserEngineID OBJECT-TYPE SYNTAX SnmpEngineID MAX-ACCESS not-accessible STATUS current DESCRIPTION "An SNMP engine's administratively-unique identifier. In a simple agent, this value is always that agent's own snmpEngineID value. The value can also take the value of the snmpEngineID of a remote SNMP engine with which this user can communicate. " ::= { usmUserEntry 1 } usmUserName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "A human readable string representing the name of the user. This is the (User-based Security) Model dependent security ID. " ::= { usmUserEntry 2 } usmUserSecurityName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-only STATUS current DESCRIPTION "A human readable string representing the user in Security Model independent format. The default transformation of the User-based Security Model dependent security ID to the securityName and vice versa is the identity function so that the securityName is the same as the userName. " ::= { usmUserEntry 3 } usmUserCloneFrom OBJECT-TYPE SYNTAX RowPointer MAX-ACCESS read-create STATUS current DESCRIPTION "A pointer to another conceptual row in this usmUserTable. The user in this other conceptual row is called the clone-from user. When a new user is created (i.e., a new conceptual row is instantiated in this table), the privacy and authentication parameters of the new user are cloned from its clone-from user. The first time an instance of this object is set by a management operation (either at or after its instantiation), the cloning process is invoked. Subsequent writes are successful but invoke no action to be taken by the receiver. The cloning process fails with an 'inconsistentName' error if the conceptual row representing the clone-from user is not in an active state when the cloning process is invoked. Cloning also causes the initial values of the secret authentication key and the secret encryption key of the new user to be set to the same value as the corresponding secret of the clone-from user. When this object is read, the ZeroDotZero OID is returned. " ::= { usmUserEntry 4 } usmUserAuthProtocol OBJECT-TYPE SYNTAX AutonomousType MAX-ACCESS read-create STATUS current DESCRIPTION "An indication of whether messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, can be authenticated, and if so, the type of authentication protocol which is used. An instance of this object is created concurrently with the creation of any other object instance for the same user (i.e., as part of the processing of the set operation which creates the first object instance in the same conceptual row). Once created, the value of an instance of this object can not be changed. If a set operation tries to set a value for an unknown or unsupported protocol, then a wrongValue error must be returned. " DEFVAL { usmHMACMD5AuthProtocol } ::= { usmUserEntry 5 } usmUserAuthKeyChange OBJECT-TYPE SYNTAX KeyChange -- typically (SIZE (0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "An object, which when modified, causes the secret authentication key used for messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, to be modified via a one-way function. The associated protocol is the usmUserAuthProtocol. The associated secret key is the user's secret authentication key (authKey). The associated hash algorithm is the algorithm used by the user's usmUserAuthProtocol. When creating a new user, it is an 'inconsistentName' error for a Set operation to refer to this object unless it is previously or concurrently initialized through a set operation on the corresponding value of usmUserCloneFrom. " DEFVAL { ''H } -- the empty string ::= { usmUserEntry 6 } usmUserOwnAuthKeyChange OBJECT-TYPE SYNTAX KeyChange -- typically (SIZE (0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "Behaves exactly as usmUserAuthKeyChange, with one notable difference: in order for the Set operation to succeed, the usmUserName of the operation requester must match the usmUserName that indexes the row which is targeted by this operation. The idea here is that access to this column can be public, since it will only allow a user to change his own secret authentication key (authKey). " DEFVAL { ''H } -- the empty string ::= { usmUserEntry 7 } usmUserPrivProtocol OBJECT-TYPE SYNTAX AutonomousType MAX-ACCESS read-create STATUS current DESCRIPTION "An indication of whether messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, can be protected from disclosure, and if so, the type of privacy protocol which is used. An instance of this object is created concurrently with the creation of any other object instance for the same user (i.e., as part of the processing of the set operation which creates the first object instance in the same conceptual row). Once created, the value of an instance of this object can not be changed. If a set operation tries to set a value for an unknown or unsupported protocol, then a wrongValue error must be returned. " DEFVAL { usmNoPrivProtocol } ::= { usmUserEntry 8 } usmUserPrivKeyChange OBJECT-TYPE SYNTAX KeyChange -- typically (SIZE (0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "An object, which when modified, causes the secret encryption key used for messages sent on behalf of this user to/from the SNMP engine identified by usmUserEngineID, to be modified via a one-way function. The associated protocol is the usmUserPrivProtocol. The associated secret key is the user's secret privacy key (privKey). The associated hash algorithm is the algorithm used by the user's usmUserAuthProtocol. When creating a new user, it is an 'inconsistentName' error for a set operation to refer to this object unless it is previously or concurrently initialized through a set operation on the corresponding value of usmUserCloneFrom. " DEFVAL { ''H } -- the empty string ::= { usmUserEntry 9 } usmUserOwnPrivKeyChange OBJECT-TYPE SYNTAX KeyChange -- typically (SIZE (0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "Behaves exactly as usmUserPrivKeyChange, with one notable difference: in order for the Set operation to succeed, the usmUserName of the operation requester must match the usmUserName that indexes the row which is targeted by this operation. The idea here is that access to this column can be public, since it will only allow a user to change his own secret privacy key (privKey). " DEFVAL { ''H } -- the empty string ::= { usmUserEntry 10 } usmUserPublic OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "A publicly-readable value which is written as part of the procedure for changing a user's secret authentication and/or privacy key, and later read to determine whether the change of the secret was effected. " DEFVAL { ''H } -- the empty string ::= { usmUserEntry 11 } usmUserStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row. Conceptual rows having the value 'permanent' must allow write-access at a minimum to: - usmUserAuthKeyChange, usmUserOwnAuthKeyChange and usmUserPublic for a user who employs authentication, and - usmUserPrivKeyChange, usmUserOwnPrivKeyChange and usmUserPublic for a user who employs privacy. Note that any user who employs authentication or privacy must allow its secret(s) to be updated and thus cannot be 'readOnly'. " DEFVAL { nonVolatile } ::= { usmUserEntry 12 } usmUserStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the usmUserStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding usmUserCloneFrom, usmUserAuthKeyChange, usmUserOwnAuthKeyChange, usmUserPrivKeyChange and usmUserOwnPrivKeyChange have all been set. The RowStatus TC [RFC1903] requires that this DESCRIPTION clause states under which circumstances other objects in this row can be modified: The value of this object has no effect on whether other objects in this conceptual row can be modified. " ::= { usmUserEntry 13 } -- Conformance Information ******************************************* usmMIBCompliances OBJECT IDENTIFIER ::= { usmMIBConformance 1 } usmMIBGroups OBJECT IDENTIFIER ::= { usmMIBConformance 2 } -- Compliance statements usmMIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP engines which implement the SNMP-USER-BASED-SM-MIB. " MODULE -- this module MANDATORY-GROUPS { usmMIBBasicGroup } OBJECT usmUserAuthProtocol MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT usmUserPrivProtocol MIN-ACCESS read-only DESCRIPTION "Write access is not required." ::= { usmMIBCompliances 1 } -- Units of compliance usmMIBBasicGroup OBJECT-GROUP OBJECTS { usmStatsUnsupportedSecLevels, usmStatsNotInTimeWindows, usmStatsUnknownUserNames, usmStatsUnknownEngineIDs, usmStatsWrongDigests, usmStatsDecryptionErrors, usmUserSpinLock, usmUserSecurityName, usmUserCloneFrom, usmUserAuthProtocol, usmUserAuthKeyChange, usmUserOwnAuthKeyChange, usmUserPrivProtocol, usmUserPrivKeyChange, usmUserOwnPrivKeyChange, usmUserPublic, usmUserStorageType, usmUserStatus } STATUS current DESCRIPTION "A collection of objects providing for configuration of an SNMP engine which implements the SNMP User-based Security Model. " ::= { usmMIBGroups 1 } END SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY, snmpModules FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF; snmpFrameworkMIB MODULE-IDENTITY LAST-UPDATED "9711200000Z" -- 20 November 1997 ORGANIZATION "SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems postal: 3060 Washington Rd Glenwood MD 21738 USA email: mundy@tis.com phone: +1 301-854-6889 Co-editor Dave Harrington Cabletron Systems, Inc. postal: Post Office Box 5005 Mail Stop: Durham 35 Industrial Way Rochester, NH 03867-5005 USA email: dbh@ctron.com phone: +1 603-337-7357 Co-editor Randy Presuhn BMC Software, Inc. postal: 1190 Saratoga Avenue Suite 130 San Jose, CA 95129 USA email: rpresuhn@bmc.com phone: +1 408-556-0720 Co-editor: Bert Wijnen IBM T.J. Watson Research postal: Schagen 33 3461 GL Linschoten Netherlands email: wijnen@vnet.ibm.com phone: +31 348-432-794 " DESCRIPTION "The SNMP Management Architecture MIB" ::= { snmpModules 10 } -- Textual Conventions used in the SNMP Management Architecture *** SnmpEngineID ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An SNMP engine's administratively-unique identifier. The value for this object may not be all zeros or all 'ff'H or the empty (zero length) string. The initial value for this object may be configured via an operator console entry or via an algorithmic function. In the latter case, the following example algorithm is recommended. In cases where there are multiple engines on the same system, the use of this algorithm is NOT appropriate, as it would result in all of those engines ending up with the same ID value. 1) The very first bit is used to indicate how the rest of the data is composed. 0 - as defined by enterprise using former methods that existed before SNMPv3. See item 2 below. 1 - as defined by this architecture, see item 3 below. Note that this allows existing uses of the engineID (also known as AgentID [RFC1910]) to co-exist with any new uses. 2) The snmpEngineID has a length of 12 octets. The first four octets are set to the binary equivalent of the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). For example, if Acme Networks has been assigned { enterprises 696 }, the first four octets would be assigned '000002b8'H. The remaining eight octets are determined via one or more enterprise-specific methods. Such methods must be designed so as to maximize the possibility that the value of this object will be unique in the agent's administrative domain. For example, it may be the IP address of the SNMP entity, or the MAC address of one of the interfaces, with each address suitably padded with random octets. If multiple methods are defined, then it is recommended that the first octet indicate the method being used and the remaining octets be a function of the method. 3) The length of the octet strings varies. The first four octets are set to the binary equivalent of the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). For example, if Acme Networks has been assigned { enterprises 696 }, the first four octets would be assigned '000002b8'H. The very first bit is set to 1. For example, the above value for Acme Networks now changes to be '800002b8'H. The fifth octet indicates how the rest (6th and following octets) are formatted. The values for the fifth octet are: 0 - reserved, unused. 1 - IPv4 address (4 octets) lowest non-special IP address 2 - IPv6 address (16 octets) lowest non-special IP address 3 - MAC address (6 octets) lowest IEEE MAC address, canonical order 4 - Text, administratively assigned Maximum remaining length 27 5 - Octets, administratively assigned Maximum remaining length 27 6-127 - reserved, unused 127-255 - as defined by the enterprise Maximum remaining length 27 " SYNTAX OCTET STRING (SIZE(1..32)) SnmpSecurityModel ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An identifier that uniquely identifies a securityModel of the Security Subsystem within the SNMP Management Architecture. The values for securityModel are allocated as follows: - The zero value is reserved. - Values between 1 and 255, inclusive, are reserved for standards-track Security Models and are managed by the Internet Assigned Numbers Authority (IANA). - Values greater than 255 are allocated to enterprise-specific Security Models. An enterprise-specific securityModel value is defined to be: enterpriseID * 256 + security model within enterprise For example, the fourth Security Model defined by the enterprise whose enterpriseID is 1 would be 260. This scheme for allocation of securityModel values allows for a maximum of 255 standards- based Security Models, and for a maximum of 255 Security Models per enterprise. It is believed that the assignment of new securityModel values will be rare in practice because the larger the number of simultaneously utilized Security Models, the larger the chance that interoperability will suffer. Consequently, it is believed that such a range will be sufficient. In the unlikely event that the standards committee finds this number to be insufficient over time, an enterprise number can be allocated to obtain an additional 255 possible values. Note that the most significant bit must be zero; hence, there are 23 bits allocated for various organizations to design and define non-standard securityModels. This limits the ability to define new proprietary implementations of Security Models to the first 8,388,608 enterprises. It is worthwhile to note that, in its encoded form, the securityModel value will normally require only a single byte since, in practice, the leftmost bits will be zero for most messages and sign extension is suppressed by the encoding rules. As of this writing, there are several values of securityModel defined for use with SNMP or reserved for use with supporting MIB objects. They are as follows: 0 reserved for 'any' 1 reserved for SNMPv1 2 reserved for SNMPv2c 3 User-Based Security Model (USM) " SYNTAX INTEGER(0..2147483647) SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An identifier that uniquely identifies a Message Processing Model of the Message Processing Subsystem within a SNMP Management Architecture. The values for messageProcessingModel are allocated as follows: - Values between 0 and 255, inclusive, are reserved for standards-track Message Processing Models and are managed by the Internet Assigned Numbers Authority (IANA). - Values greater than 255 are allocated to enterprise-specific Message Processing Models. An enterprise messageProcessingModel value is defined to be: enterpriseID * 256 + messageProcessingModel within enterprise For example, the fourth Message Processing Model defined by the enterprise whose enterpriseID is 1 would be 260. This scheme for allocation of securityModel values allows for a maximum of 255 standards- based Message Processing Models, and for a maximum of 255 Message Processing Models per enterprise. It is believed that the assignment of new messageProcessingModel values will be rare in practice because the larger the number of simultaneously utilized Message Processing Models, the larger the chance that interoperability will suffer. It is believed that such a range will be sufficient. In the unlikely event that the standards committee finds this number to be insufficient over time, an enterprise number can be allocated to obtain an additional 256 possible values. Note that the most significant bit must be zero; hence, there are 23 bits allocated for various organizations to design and define non-standard messageProcessingModels. This limits the ability to define new proprietary implementations of Message Processing Models to the first 8,388,608 enterprises. It is worthwhile to note that, in its encoded form, the securityModel value will normally require only a single byte since, in practice, the leftmost bits will be zero for most messages and sign extension is suppressed by the encoding rules. As of this writing, there are several values of messageProcessingModel defined for use with SNMP. They are as follows: 0 reserved for SNMPv1 1 reserved for SNMPv2c 2 reserved for SNMPv2u and SNMPv2* 3 reserved for SNMPv3 " SYNTAX INTEGER(0..2147483647) SnmpSecurityLevel ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A Level of Security at which SNMP messages can be sent or with which operations are being processed; in particular, one of: noAuthNoPriv - without authentication and without privacy, authNoPriv - with authentication but without privacy, authPriv - with authentication and with privacy. These three values are ordered such that noAuthNoPriv is less than authNoPriv and authNoPriv is less than authPriv. " SYNTAX INTEGER { noAuthNoPriv(1), authNoPriv(2), authPriv(3) } SnmpAdminString ::= TEXTUAL-CONVENTION DISPLAY-HINT "255a" STATUS current DESCRIPTION "An octet string containing administrative information, preferably in human-readable form. To facilitate internationalization, this information is represented using the ISO/IEC IS 10646-1 character set, encoded as an octet string using the UTF-8 transformation format described in [RFC2044]. Since additional code points are added by amendments to the 10646 standard from time to time, implementations must be prepared to encounter any code point from 0x00000000 to 0x7fffffff. The use of control codes should be avoided. When it is necessary to represent a newline, the control code sequence CR LF should be used. The use of leading or trailing white space should be avoided. For code points not directly supported by user interface hardware or software, an alternative means of entry and display, such as hexadecimal, may be provided. For information encoded in 7-bit US-ASCII, the UTF-8 encoding is identical to the US-ASCII encoding. Note that when this TC is used for an object that is used or envisioned to be used as an index, then a SIZE restriction must be specified so that the number of sub-identifiers for any object instance does not exceed the limit of 128, as defined by [RFC1905]. " SYNTAX OCTET STRING (SIZE (0..255)) -- Administrative assignments *************************************** snmpFrameworkAdmin OBJECT IDENTIFIER ::= { snmpFrameworkMIB 1 } snmpFrameworkMIBObjects OBJECT IDENTIFIER ::= { snmpFrameworkMIB 2 } snmpFrameworkMIBConformance OBJECT IDENTIFIER ::= { snmpFrameworkMIB 3 } -- the snmpEngine Group ******************************************** snmpEngine OBJECT IDENTIFIER ::= { snmpFrameworkMIBObjects 1 } snmpEngineID OBJECT-TYPE SYNTAX SnmpEngineID MAX-ACCESS read-only STATUS current DESCRIPTION "An SNMP engine's administratively-unique identifier. " ::= { snmpEngine 1 } snmpEngineBoots OBJECT-TYPE SYNTAX INTEGER (1..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times that the SNMP engine has (re-)initialized itself since its initial configuration. " ::= { snmpEngine 2 } snmpEngineTime OBJECT-TYPE SYNTAX INTEGER (0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The number of seconds since the SNMP engine last incremented the snmpEngineBoots object. " ::= { snmpEngine 3 } snmpEngineMaxMessageSize OBJECT-TYPE SYNTAX INTEGER (484..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "The maximum length in octets of an SNMP message which this SNMP engine can send or receive and process, determined as the minimum of the maximum message size values supported among all of the transports available to and supported by the engine. " ::= { snmpEngine 4 } -- Registration Points for Authentication and Privacy Protocols ** snmpAuthProtocols OBJECT-IDENTITY STATUS current DESCRIPTION "Registration point for standards-track authentication protocols used in SNMP Management Frameworks. " ::= { snmpFrameworkAdmin 1 } snmpPrivProtocols OBJECT-IDENTITY STATUS current DESCRIPTION "Registration point for standards-track privacy protocols used in SNMP Management Frameworks. " ::= { snmpFrameworkAdmin 2 } -- Conformance information ****************************************** snmpFrameworkMIBCompliances OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 1} snmpFrameworkMIBGroups OBJECT IDENTIFIER ::= {snmpFrameworkMIBConformance 2} -- compliance statements snmpFrameworkMIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP engines which implement the SNMP Management Framework MIB. " MODULE -- this module MANDATORY-GROUPS { snmpEngineGroup } ::= { snmpFrameworkMIBCompliances 1 } -- units of conformance snmpEngineGroup OBJECT-GROUP OBJECTS { snmpEngineID, snmpEngineBoots, snmpEngineTime, snmpEngineMaxMessageSize } STATUS current DESCRIPTION "A collection of objects for identifying and determining the configuration and current timeliness values of an SNMP engine. " ::= { snmpFrameworkMIBGroups 1 } END SNMP-MPD-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF MODULE-IDENTITY, OBJECT-TYPE, snmpModules, Counter32 FROM SNMPv2-SMI; snmpMPDMIB MODULE-IDENTITY LAST-UPDATED "9711200000Z" -- 20 November 1997 ORGANIZATION "SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems postal: 3060 Washington Road Glenwood, MD 21738 USA email: mundy@tis.com phone: +1 301-854-6889 Co-editor: Jeffrey Case SNMP Research, Inc. postal: 3001 Kimberlin Heights Road Knoxville, TN 37920-9716 USA email: case@snmp.com phone: +1 423-573-1434 Co-editor Dave Harrington Cabletron Systems, Inc. postal: Post Office Box 5005 MailStop: Durham 35 Industrial Way Rochester, NH 03867-5005 USA email: dbh@ctron.com phone: +1 603-337-7357 Co-editor: Randy Presuhn BMC Software, Inc. postal: 1190 Saratoga Ave, Suite 190 San Jose, CA 95120 USA email: rpresuhn@bmc.com phone: +1 408-556-0720 Co-editor: Bert Wijnen IBM T. J. Watson Research postal: Schagen 33 3461 GL Linschoten Netherlands email: wijnen@vnet.ibm.com phone: +31 348-432-794 " DESCRIPTION "The MIB for Message Processing and Dispatching" ::= { snmpModules 11 } -- Administrative assignments *************************************** snmpMPDAdmin OBJECT IDENTIFIER ::= { snmpMPDMIB 1 } snmpMPDMIBObjects OBJECT IDENTIFIER ::= { snmpMPDMIB 2 } snmpMPDMIBConformance OBJECT IDENTIFIER ::= { snmpMPDMIB 3 } -- Statistics for SNMP Messages ************************************* snmpMPDStats OBJECT IDENTIFIER ::= { snmpMPDMIBObjects 1 } snmpUnknownSecurityModels OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because they referenced a securityModel that was not known to or supported by the SNMP engine. " ::= { snmpMPDStats 1 } snmpInvalidMsgs OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because there were invalid or inconsistent components in the SNMP message. " ::= { snmpMPDStats 2 } snmpUnknownPDUHandlers OBJECT-TYPE SYNTAX Counter32 MAX-ACCESS read-only STATUS current DESCRIPTION "The total number of packets received by the SNMP engine which were dropped because the PDU contained in the packet could not be passed to an application responsible for handling the pduType, e.g. no SNMP application had registered for the proper combination of the contextEngineID and the pduType. " ::= { snmpMPDStats 3 } -- Conformance information ****************************************** snmpMPDMIBCompliances OBJECT IDENTIFIER ::= {snmpMPDMIBConformance 1} snmpMPDMIBGroups OBJECT IDENTIFIER ::= {snmpMPDMIBConformance 2} -- Compliance statements snmpMPDCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which implement the SNMP-MPD-MIB. " MODULE -- this module MANDATORY-GROUPS { snmpMPDGroup } ::= { snmpMPDMIBCompliances 1 } snmpMPDGroup OBJECT-GROUP OBJECTS { snmpUnknownSecurityModels, snmpInvalidMsgs, snmpUnknownPDUHandlers } STATUS current DESCRIPTION "A collection of objects providing for remote monitoring of the SNMP Message Processing and Dispatching process. " ::= { snmpMPDMIBGroups 1 } END SNMP-NOTIFICATION-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, snmpModules FROM SNMPv2-SMI RowStatus, StorageType FROM SNMPv2-TC SnmpAdminString FROM SNMP-FRAMEWORK-MIB SnmpTagValue, snmpTargetParamsName FROM SNMP-TARGET-MIB MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF; snmpNotificationMIB MODULE-IDENTITY LAST-UPDATED "9711210000Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems Postal: 3060 Washington Rd Glenwood MD 21738 USA Email: mundy@tis.com Phone: +1-301-854-6889 Co-editor: David B. Levi SNMP Research, Inc. Postal: 3001 Kimberlin Heights Road Knoxville, TN 37920-9716 E-mail: levi@snmp.com Phone: +1 423 573 1434 Co-editor: Paul Meyer Secure Computing Corporation Postal: 2675 Long Lake Road Roseville, MN 55113 E-mail: paul_meyer@securecomputing.com Phone: +1 612 628 1592 Co-editor: Bob Stewart Cisco Systems, Inc. Postal: 170 West Tasman Drive San Jose, CA 95134-1706 E-mail: bstewart@cisco.com Phone: +1 603 654 6923" DESCRIPTION "This MIB module defines MIB objects which provide mechanisms to remotely configure the parameters used by an SNMP entity for the generation of notifications." REVISION "9707140000Z" DESCRIPTION "The initial revision." ::= { snmpModules 13 } snmpNotifyObjects OBJECT IDENTIFIER ::= { snmpNotificationMIB 1 } snmpNotifyConformance OBJECT IDENTIFIER ::= { snmpNotificationMIB 3 } -- -- -- The snmpNotifyObjects group -- -- snmpNotifyTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpNotifyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is used to select management targets which should receive notifications, as well as the type of notification which should be sent to each selected management target." ::= { snmpNotifyObjects 1 } snmpNotifyEntry OBJECT-TYPE SYNTAX SnmpNotifyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table selects a set of management targets which should receive notifications, as well as the type of notification which should be sent to each selected management target. Entries in the snmpNotifyTable are created and deleted using the snmpNotifyRowStatus object." INDEX { IMPLIED snmpNotifyName } ::= { snmpNotifyTable 1 } SnmpNotifyEntry ::= SEQUENCE { snmpNotifyName SnmpAdminString, snmpNotifyTag SnmpTagValue, snmpNotifyType INTEGER, snmpNotifyStorageType StorageType, snmpNotifyRowStatus RowStatus } snmpNotifyName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpNotifyEntry." ::= { snmpNotifyEntry 1 } snmpNotifyTag OBJECT-TYPE SYNTAX SnmpTagValue MAX-ACCESS read-create STATUS current DESCRIPTION "This object contains a single tag value which is used to select entries in the snmpTargetAddrTable. Any entry in the snmpTargetAddrTable which contains a tag value which is equal to the value of an instance of this object is selected. If this object contains a value of zero length, no entries are selected." ::= { snmpNotifyEntry 2 } snmpNotifyType OBJECT-TYPE SYNTAX INTEGER { trap(1), inform(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "This object determines the type of notification to be generated for entries in the snmpTargetAddrTable selected by the corresponding instance of snmpNotifyTag. If the value of this object is trap(1), then any messages generated for selected rows will contain SNMPv2-Trap PDUs. If the value of this object is inform(2), then any messages generated for selected rows will contain Inform PDUs. Note that if an SNMP entity only supports generation of traps (and not informs), then this object may be read-only." DEFVAL { trap } ::= { snmpNotifyEntry 3 } snmpNotifyStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type for this conceptual row." ::= { snmpNotifyEntry 4 } snmpNotifyRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). Until instances of all corresponding columns are appropriately configured, the value of the corresponding instance of the snmpNotifyRowStatus column is 'notReady'. In particular, a newly created row cannot be made active until the corresponding snmpNotifyTag has been set." ::= { snmpNotifyEntry 5 } snmpNotifyFilterProfileTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpNotifyFilterProfileEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "This table is used to associate a notification filter profile with a particular set of target parameters." ::= { snmpNotifyObjects 2 } snmpNotifyFilterProfileEntry OBJECT-TYPE SYNTAX SnmpNotifyFilterProfileEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in this table indicates the name of the filter profile to be used when generating notifications using the corresponding entry in the snmpTargetParamsTable. Entries in the snmpNotifyFilterProfileTable are created and deleted using the snmpNotifyFilterProfileRowStatus object." INDEX { IMPLIED snmpTargetParamsName } ::= { snmpNotifyFilterProfileTable 1 } SnmpNotifyFilterProfileEntry ::= SEQUENCE { snmpNotifyFilterProfileName SnmpAdminString, snmpNotifyFilterProfileStorType StorageType, snmpNotifyFilterProfileRowStatus RowStatus } snmpNotifyFilterProfileName OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(1..32)) MAX-ACCESS read-create STATUS current DESCRIPTION "The name of the filter profile to be used when generating notifications using the corresponding entry in the snmpTargetAddrTable." ::= { snmpNotifyFilterProfileEntry 1 } snmpNotifyFilterProfileStorType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type of this conceptual row." ::= { snmpNotifyFilterProfileEntry 2 } snmpNotifyFilterProfileRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5)." ::= { snmpNotifyFilterProfileEntry 3 } snmpNotifyFilterTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpNotifyFilterEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of filter profiles. Filter profiles are used to determine whether particular management targets should receive particular notifications. When a notification is generated, it must be compared with the filters associated with each management target which is configured to receive notifications. If the notification is matched by a filter, it is not sent to the management target with which the filter is associated." ::= { snmpNotifyObjects 3 } snmpNotifyFilterEntry OBJECT-TYPE SYNTAX SnmpNotifyFilterEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An element of a filter profile. Entries in the snmpNotifyFilterTable are created and deleted using the snmpNotifyFilterRowStatus object." INDEX { snmpNotifyFilterProfileName, IMPLIED snmpNotifyFilterSubtree } ::= { snmpNotifyFilterTable 1 } SnmpNotifyFilterEntry ::= SEQUENCE { snmpNotifyFilterSubtree OBJECT IDENTIFIER, snmpNotifyFilterMask OCTET STRING, snmpNotifyFilterType INTEGER, snmpNotifyFilterStorageType StorageType, snmpNotifyFilterRowStatus RowStatus } snmpNotifyFilterSubtree OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS not-accessible STATUS current DESCRIPTION "The MIB subtree which, when combined with the corresponding instance of snmpNotifyFilterMask, defines a family of subtrees which are included in or excluded from the filter profile." ::= { snmpNotifyFilterEntry 1 } snmpNotifyFilterMask OBJECT-TYPE SYNTAX OCTET STRING (SIZE(0..16)) MAX-ACCESS read-create STATUS current DESCRIPTION "The bit mask which, in combination with the corresponding instance of snmpNotifyFilterSubtree, defines a family of subtrees which are included in or excluded from the filter profile. Each bit of this bit mask corresponds to a sub-identifier of snmpNotifyFilterSubtree, with the most significant bit of the i-th octet of this octet string value (extended if necessary, see below) corresponding to the (8*i - 7)-th sub-identifier, and the least significant bit of the i-th octet of this octet string corresponding to the (8*i)-th sub-identifier, where i is in the range 1 through 16. Each bit of this bit mask specifies whether or not the corresponding sub-identifiers must match when determining if an OBJECT IDENTIFIER matches this family of filter subtrees; a '1' indicates that an exact match must occur; a '0' indicates 'wild card', i.e., any sub-identifier value matches. Thus, the OBJECT IDENTIFIER X of an object instance is contained in a family of filter subtrees if, for each sub-identifier of the value of snmpNotifyFilterSubtree, either: the i-th bit of snmpNotifyFilterMask is 0, or the i-th sub-identifier of X is equal to the i-th sub-identifier of the value of snmpNotifyFilterSubtree. If the value of this bit mask is M bits long and there are more than M sub-identifiers in the corresponding instance of snmpNotifyFilterSubtree, then the bit mask is extended with 1's to be the required length. Note that when the value of this object is the zero-length string, this extension rule results in a mask of all-1's being used (i.e., no 'wild card'), and the family of filter subtrees is the one subtree uniquely identified by the corresponding instance of snmpNotifyFilterSubtree." DEFVAL { ''H } ::= { snmpNotifyFilterEntry 2 } snmpNotifyFilterType OBJECT-TYPE SYNTAX INTEGER { included(1), excluded(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "This object indicates whether the family of filter subtrees defined by this entry are included in or excluded from a filter." DEFVAL { included } ::= { snmpNotifyFilterEntry 3 } snmpNotifyFilterStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type of this conceptual row." ::= { snmpNotifyFilterEntry 4 } snmpNotifyFilterRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5)." ::= { snmpNotifyFilterEntry 5 } -- -- -- Conformance information -- -- snmpNotifyCompliances OBJECT IDENTIFIER ::= { snmpNotifyConformance 1 } snmpNotifyGroups OBJECT IDENTIFIER ::= { snmpNotifyConformance 2 } -- -- -- Compliance statements -- -- snmpNotifyBasicCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for minimal SNMP entities which implement only SNMP Traps and read-create operations on only the snmpTargetAddrTable." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup } OBJECT snmpTargetParamsMPModel MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required." OBJECT snmpTargetParamsSecurityModel MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required." OBJECT snmpTargetParamsSecurityName MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required." OBJECT snmpTargetParamsSecurityLevel MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required." OBJECT snmpTargetParamsStorageType SYNTAX INTEGER { readOnly(5) } MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required. Support of the values other(1), volatile(2), nonVolatile(3), and permanent(4) is not required." OBJECT snmpTargetParamsRowStatus SYNTAX INTEGER { active(1) } MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access to the snmpTargetParamsTable is not required. Support of the values notInService(2), notReady(3), createAndGo(4), createAndWait(5), and destroy(6) is not required." MODULE -- This Module MANDATORY-GROUPS { snmpNotifyGroup } OBJECT snmpNotifyTag MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required." OBJECT snmpNotifyType SYNTAX INTEGER { trap(1) } MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required. Support of the value notify(2) is not required." OBJECT snmpNotifyStorageType SYNTAX INTEGER { readOnly(5) } MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access is not required. Support of the values other(1), volatile(2), nonVolatile(3), and permanent(4) is not required." OBJECT snmpNotifyRowStatus SYNTAX INTEGER { active(1) } MIN-ACCESS read-only DESCRIPTION "Create/delete/modify access to the snmpNotifyTable is not required. Support of the values notInService(2), notReady(3), createAndGo(4), createAndWait(5), and destroy(6) is not required." ::= { snmpNotifyCompliances 1 } snmpNotifyBasicFiltersCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which implement SNMP Traps with filtering, and read-create operations on all related tables." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup } MODULE -- This Module MANDATORY-GROUPS { snmpNotifyGroup, snmpNotifyFilterGroup } ::= { snmpNotifyCompliances 2 } snmpNotifyFullCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which either implement only SNMP Informs, or both SNMP Traps and SNMP Informs, plus filtering and read-create operations on all related tables." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup, snmpTargetResponseGroup } MODULE -- This Module MANDATORY-GROUPS { snmpNotifyGroup, snmpNotifyFilterGroup } ::= { snmpNotifyCompliances 3 } snmpNotifyGroup OBJECT-GROUP OBJECTS { snmpNotifyTag, snmpNotifyType, snmpNotifyStorageType, snmpNotifyRowStatus } STATUS current DESCRIPTION "A collection of objects for selecting which management targets are used for generating notifications, and the type of notification to be generated for each selected management target." ::= { snmpNotifyGroups 1 } snmpNotifyFilterGroup OBJECT-GROUP OBJECTS { snmpNotifyFilterProfileName, snmpNotifyFilterProfileStorType, snmpNotifyFilterProfileRowStatus, snmpNotifyFilterMask, snmpNotifyFilterType, snmpNotifyFilterStorageType, snmpNotifyFilterRowStatus } STATUS current DESCRIPTION "A collection of objects providing remote configuration of notification filters." ::= { snmpNotifyGroups 2 } END SNMP-PROXY-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, snmpModules FROM SNMPv2-SMI RowStatus, StorageType FROM SNMPv2-TC SnmpEngineID, SnmpAdminString FROM SNMP-FRAMEWORK-MIB SnmpTagValue, FROM SNMP-TARGET-MIB MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF; snmpProxyMIB MODULE-IDENTITY LAST-UPDATED "9711210000Z" ORGANIZATION "IETF SNMPv3 Working Group" CONTACT-INFO "WG-email: snmpv3@tis.com Subscribe: majordomo@tis.com In message body: subscribe snmpv3 Chair: Russ Mundy Trusted Information Systems Postal: 3060 Washington Rd Glenwood MD 21738 USA Email: mundy@tis.com Phone: +1-301-854-6889 Co-editor: David B. Levi SNMP Research, Inc. Postal: 3001 Kimberlin Heights Road Knoxville, TN 37920-9716 E-mail: levi@snmp.com Phone: +1 423 573 1434 Co-editor: Paul Meyer Secure Computing Corporation Postal: 2675 Long Lake Road Roseville, MN 55113 E-mail: paul_meyer@securecomputing.com Phone: +1 612 628 1592 Co-editor: Bob Stewart Cisco Systems, Inc. Postal: 170 West Tasman Drive San Jose, CA 95134-1706 E-mail: bstewart@cisco.com Phone: +1 603 654 6923" DESCRIPTION "This MIB module defines MIB objects which provide mechanisms to remotely configure the parameters used by a proxy forwarding application." REVISION "9707140000Z" DESCRIPTION "The initial revision." ::= { snmpModules 14 } snmpProxyObjects OBJECT IDENTIFIER ::= { snmpProxyMIB 1 } snmpProxyConformance OBJECT IDENTIFIER ::= { snmpProxyMIB 3 } -- -- -- The snmpProxyObjects group -- -- snmpProxyTable OBJECT-TYPE SYNTAX SEQUENCE OF SnmpProxyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The table of translation parameters used by proxy forwarder applications for forwarding SNMP messages." ::= { snmpProxyObjects 2 } snmpProxyEntry OBJECT-TYPE SYNTAX SnmpProxyEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A set of translation parameters used by a proxy forwarder application for forwarding SNMP messages. Entries in the snmpProxyTable are created and deleted using the snmpProxyRowStatus object." INDEX { IMPLIED snmpProxyName } ::= { snmpProxyTable 1 } SnmpProxyEntry ::= SEQUENCE { snmpProxyName SnmpAdminString, snmpProxyType INTEGER, snmpProxyContextEngineID SnmpEngineID, snmpProxyContextName SnmpAdminString, snmpProxyTargetParamsIn SnmpAdminString, snmpProxySingleTargetOut SnmpAdminString, snmpProxyMultipleTargetOut SnmpTagValue, snmpProxyStorageType StorageType, snmpProxyRowStatus RowStatus } snmpProxyName OBJECT-TYPE SYNTAX OCTET STRING (SIZE(1..32)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The locally arbitrary, but unique identifier associated with this snmpProxyEntry." ::= { snmpProxyEntry 1 } snmpProxyType OBJECT-TYPE SYNTAX INTEGER { read(1), write(2), trap(3), inform(4) } MAX-ACCESS read-create STATUS current DESCRIPTION "The type of message that may be forwarded using the translation parameters defined by this entry." ::= { snmpProxyEntry 2 } snmpProxyContextEngineID OBJECT-TYPE SYNTAX SnmpEngineID MAX-ACCESS read-create STATUS current DESCRIPTION "The contextEngineID contained in messages that may be forwarded using the translation parameters defined by this entry." ::= { snmpProxyEntry 3 } snmpProxyContextName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "The contextName contained in messages that may be forwarded using the translation parameters defined by this entry. This object is optional, and if not supported, the contextName contained in a message is ignored when selecting an entry in the snmpProxyTable." ::= { snmpProxyEntry 4 } snmpProxyTargetParamsIn OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "This object selects an entry in the snmpTargetParamsTable. The selected entry is used to determine which row of the snmpProxyTable to use for forwarding received messages." ::= { snmpProxyEntry 5 } snmpProxySingleTargetOut OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "This object selects a management target defined in the snmpTargetAddrTable (in the SNMP-TARGET-MIB). The selected target is defined by an entry in the snmpTargetAddrTable whose index value (snmpTargetAddrName) is equal to this object. This object is only used when selection of a single target is required (i.e. when forwarding an incoming read or write request)." ::= { snmpProxyEntry 6 } snmpProxyMultipleTargetOut OBJECT-TYPE SYNTAX SnmpTagValue MAX-ACCESS read-create STATUS current DESCRIPTION "This object selects a set of management targets defined in the snmpTargetAddrTable (in the SNMP-TARGET-MIB). This object is only used when selection of multiple targets is required (i.e. when forwarding an incoming notification)." ::= { snmpProxyEntry 7 } snmpProxyStorageType OBJECT-TYPE SYNTAX StorageType MAX-ACCESS read-create STATUS current DESCRIPTION "The storage type of this conceptual row." ::= { snmpProxyEntry 8 } snmpProxyRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this conceptual row. To create a row in this table, a manager must set this object to either createAndGo(4) or createAndWait(5). The following objects may not be modified while the value of this object is active(1): - snmpProxyType - snmpProxyContextEngineID - snmpProxyContextName - snmpProxyTargetParamsIn - snmpProxySingleTargetOut - snmpProxyMultipleTargetOut" ::= { snmpProxyEntry 9 } -- -- -- Conformance information -- -- snmpProxyCompliances OBJECT IDENTIFIER ::= { snmpProxyConformance 1 } snmpProxyGroups OBJECT IDENTIFIER ::= { snmpProxyConformance 2 } -- -- -- Compliance statements -- -- snmpProxyCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which include a proxy forwarding application." MODULE SNMP-TARGET-MIB MANDATORY-GROUPS { snmpTargetBasicGroup, snmpTargetResponseGroup } MODULE -- This Module MANDATORY-GROUPS { snmpProxyGroup } ::= { snmpProxyCompliances 1 } snmpProxyGroup OBJECT-GROUP OBJECTS { snmpProxyType, snmpProxyContextEngineID, snmpProxyContextName, snmpProxyTargetParamsIn, snmpProxySingleTargetOut, snmpProxyMultipleTargetOut, snmpProxyStorageType, snmpProxyRowStatus } STATUS current DESCRIPTION "A collection of objects providing remote configuration of management target translation parameters for use by proxy forwarder applications." ::= { snmpProxyGroups 3 } END